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ABSTRACT  
 
This study aims to comparatively evaluate various machine learning algorithms developed for the 
classification of thyroid diseases. By employing five distinct datasets with differing statistical 
structures and class imbalances, the performance of nine algorithms—CatBoost, XGBoost, 
LightGBM, Random Forest, Artificial Neural Network (ANN), KNN, SVM, Stacking, and GridSearch-
Tuned Logistic Regression (gst-LR)  has been comprehensively analyzed. Model performance was 
assessed not only based on accuracy but also through multidimensional metrics such as F1-score, 
precision, recall, and specificity. Stratified K-Fold cross-validation was applied in the model 
validation processes to ensure class representation and enhance generalizability. The findings 
reveal that boosting-based algorithms (particularly CatBoost, XGBoost, and LightGBM) delivered 
high and stable accuracy across several datasets. The Random Forest model stood out with its 
consistent performance even on imbalanced data, whereas the ANN model demonstrated notable 
fluctuations depending on the structural properties of the dataset. Classical methods such as KNN 
and SVM achieved competitive results only when the data exhibited well-defined decision 
boundaries, showing limitations in more complex distributions. The systematic approach adopted 
in this study presents a multilayered classification framework not only for model comparison but 
also for the evaluation of explainability, reproducibility, and contextual suitability. The overall 
results indicate that no single model dominates across all scenarios; rather, the success of 
classification strongly depends on data characteristics such as class distribution, dimensionality, 
and feature separability. Models such as Random Forest and boosting algorithms consistently 
performed well in terms of both accuracy and F1-score, with scores exceeding 98% and 95% 
respectively on certain datasets. These findings underscore the importance of context-aware 
model selection and reinforce the need for multi-metric evaluations in real-world clinical decision 
support applications. 

Tanının Ötesinde: Farklı Veri Setleri ile Tiroid Kanseri 
Nüks Faktörlerinin Değerlendirilmesi 

ÖZ 
 
Bu çalışma, tiroid hastalıklarının sınıflandırılması amacıyla geliştirilen çeşitli makine öğrenmesi 
algoritmalarının karşılaştırmalı olarak değerlendirilmesini hedeflemektedir. Farklı istatistiksel 
yapılar ve sınıf dengesizlikleri içeren beş ayrı veri kümesi kullanılarak, CatBoost, XGBoost, 
LightGBM, Random Forest, Yapay Sinir Ağı (ANN), KNN, SVM, Stacking ve hiperparametre 
optimizasyonu uygulanmış Lojistik Regresyon (gst-LR) algoritmalarının performansları detaylı 
biçimde analiz edilmiştir. Model başarımı, yalnızca doğruluk (accuracy) temelinde değil, aynı 
zamanda F1 skoru, precision, recall ve specificity gibi çok boyutlu metrikler üzerinden 
değerlendirilmiştir. Model doğrulama süreçlerinde Stratified K-Fold çapraz doğrulama 
uygulanarak, sınıf temsiliyetini koruyan ve genellenebilirliği artıran bir yapı benimsenmiştir. 
Bulgular, özellikle boosting tabanlı algoritmaların (özellikle CatBoost, XGBoost, LightGBM) birçok 
veri kümesinde yüksek doğruluk ve kararlılık sağladığını göstermektedir. Random Forest modeli, 
dengesiz veri setlerinde dahi istikrarlı performansıyla öne çıkarken, ANN modelinin başarımı veri 
setinin yapısal özelliklerine göre anlamlı dalgalanmalar göstermiştir. KNN ve SVM gibi klasik 
yöntemler ise ayrım gücü yüksek veri yapılarında başarılı sonuçlar sunarken, daha karmaşık yapılar 
karşısında sınırlı kalmıştır. Elde edilen nicel bulgular, model başarısının yalnızca genel doğrulukla 
açıklanamayacağını; veri yapısı, sınıf dağılımı ve öğrenme kapasitesi gibi çoklu faktörlerin bütüncül 
etkisiyle değerlendirilmesi gerektiğini ortaya koymuştur. Random Forest, CatBoost ve LightGBM 
algoritmaları, farklı senaryolarda %98'in üzerinde doğruluk ve %95'e yakın F1 skoru ile en başarılı 
modeller olarak öne çıkmıştır. ANN yalnızca belirli veri kümelerinde bu düzeye yaklaşabilmiş, SVM 
ve KNN ise sınıf ayrımı belirgin olmadığında performans kaybı yaşamıştır. Bu değerlendirme, tıbbi 
karar destek sistemlerine entegre edilecek sınıflandırma modellerinin, yalnızca doğruluk temelinde 
değil, bağlamsal uyum, açıklanabilirlik ve dengeli sınıf performansı gibi kriterlerle birlikte seçilmesi 
gerektiğini vurgulamaktadır. 
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1. Introduction (Giriş)  
 

Thyroid cancer is the most common malignant tumour of the endocrine system and has become a more 
prominent clinical problem in healthcare systems, especially with increasing diagnosis rates in the last 
two decades [1]. It has attracted attention with a globally increasing incidence rate, especially in the 
last two decades. According to the data of the American Cancer Society for 2023, the number of 
individuals diagnosed with thyroid cancer reaches approximately 43,800 per year and it is reported 
that this disease is three times more common in women than in men [2].  Advances in diagnostic 
techniques such as ultrasonography and needle aspiration biopsy have facilitated the detection of small 
nodules, especially micropapillary type, at an earlier stage. However, although the possibilities for early 
diagnosis have increased, it is still a significant challenge to accurately determine the risk level of the 
disease in thyroid cancer cases with different biological subtypes and clinical courses [3]. The 
development of diagnostic technologies, especially the widespread use of methods such as high-
resolution ultrasonography and needle aspiration biopsy, has made it possible to detect low-sized 
lesions such as micropapillary variants at an earlier stage [4]. However, this increase in early diagnosis 
rates does not eliminate the biological heterogeneity of the disease; on the contrary, it shows a great 
variation in terms of risk level and response to treatment. This situation reveals the inadequacy of the 
approach based on standard protocols and necessitates the development of individualised models 
based on patient-specific risk prediction. 
 
Decision-making processes based on risk prediction are of great importance in the management of 
thyroid cancer cases [5]. The accuracy of risk stratification plays a decisive role both in the selection of 
treatment strategies applied to reduce the risk of recurrence and in preventing patients from being 
exposed to unnecessary aggressive treatment processes. Inadequate risk stratification reduces the 
success of the patient-specific medical approach and may also lead to unnecessary resource utilisation 
and patient dissatisfaction in healthcare delivery. Therefore, the development of predictive models and 
the dissemination of clinical decision support systems, which are considered as one of the basic 
elements of individualised medicine, have become a strategic necessity for contemporary oncology 
practices. 
 
One of the most critical steps in the management of thyroid cancer cases is the accurate assignment of 
patients to low, intermediate or high risk groups [6]. This classification plays a decisive role in 
predicting the risk of recurrence, making surgical and radioactive iodine treatment decisions and 
planning the follow-up process. However, existing clinical classification systems are generally based on 
a limited number of variables and cannot adequately utilise the potential offered by multivariate 
biomedical data [7]. Machine learning (ML) algorithms developed to fill this gap attract attention with 
their capacity to extract meaningful patterns from high-dimensional and multivariate data structures. 
In this respect, ML plays a critical role in the future of medical decision support systems [8]. 
 
The aim of this study is to develop versatile and reliable prediction models by integrating machine 
learning approaches with classical statistical methods in thyroid cancer risk analysis. In this context, 
three different open access datasets were used and a total of nine different machine learning algorithms 
were systematically compared. The algorithms used include logistic regression, decision trees, random 
forest, support vector machines, k-nearest neighbour, XGBoost, LightGBM, gradient boosting machine 
(GBM) and multilayer artificial neural networks[9]. The performance of each model was evaluated with 
multidimensional metrics such as accuracy, sensitivity, specificity, F1 score, and inferences from 
statistical analyses and machine learning predictions were interpreted together. 
 
The variables included in the data sets cover critical elements of thyroid cancer pathophysiology such 
as age, gender, radiotherapy history, adenopathy status, tumour focality, pathological subtype, TNM 
staging, clinical response and recurrence information. This multidimensional structure creates a wide 
learning ground for both classical statistical analyses (chi-square test, ANOVA, correlation analyses, 
etc.) and machine learning models [10]. As a matter of fact, the detailed statistical analysis process 
carried out at the beginning of the study was applied to discover the relationship between variables, 
identify outliers and provide a methodological basis for the model development phase.  
 
This holistic approach integrates not only the ‘black box’ structure of machine learning algorithms, but 
also the interpretability of statistical inferences, making it possible to develop a more explainable and 
clinically evaluable model. In particular, the cross-analysis of statistical correlation tests that come with 
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AUC values enables to consider significance as well as accuracy in model selection. Thus, the study not 
only provides an algorithmic comparison, but also generates data-based clinical insights. 
 
In conclusion, this research presents a new methodological framework for risk stratification of thyroid 
cancer using three different datasets, using both statistical analyses and machine learning algorithms 
in an integrated manner. The findings have important implications for the design of individualised 
treatment protocols, development of clinical decision support systems and bridging methodological 
gaps in the academic literature. At the same time, with its multi-model approach and holistic analysis 
method, it provides an up-to-date example of explainable and reliable artificial intelligence systems in 
which digital health applications are evolving. 
 
This paper consists of an introduction and four main sections. In the second section, current research 
on thyroid cancer is reviewed, and studies on statistical approaches and machine learning-based 
models used in risk prediction are analysed in detail. In the third chapter, three different datasets used 
in the study, statistical analyses, selected features, machine learning algorithms and modelling process 
are presented in detail. In the fourth section, the performances of nine different machine learning 
models in thyroid cancer risk prediction are compared; comprehensive analyses of the models on 
accuracy, sensitivity, specificity, F1-Score and other metrics are performed. In the fifth and final section, 
the findings are evaluated, the contribution of the multi-analysis strategy developed in this study to 
clinical decision support systems is discussed and recommendations for future research are presented. 
 
Thyroid cancer has been at the centre of numerous clinical and cognitive studies, especially in recent 
years, with diagnostic rates increasing globally [11]. This increase cannot be explained solely by the 
widespread availability of diagnostic imaging modalities; the identification of molecular biomarkers, 
the development of new staging systems and the drive towards individualised treatment approaches 
have also expanded the volume of research [12]. In particular, the widespread detection of low-risk 
types such as micropapillary thyroid carcinoma has necessitated more detailed analyses of recurrence 
risk and treatment response. This has increased the interest in multidisciplinary studies using both 
classical epidemiological approaches and artificial intelligence-based modelling. 
 
In the literature, the variety of methods used in thyroid cancer risk prediction and classification 
processes is remarkable. The methodological spectrum ranging from traditional regression models to 
deep learning exhibits variable performance depending on different data sources and clinical scenarios. 
However, many studies have been conducted on limited variable sets or small sample sizes, and 
methodological controls such as model comparison and cross-validation are often neglected [13]. 
Therefore, a systematic evaluation of the methodological approaches available in the literature is 
important, especially for the analysis of multivariate and real-world data. In this context, the literature 
review will provide a comprehensive analysis of the machine learning and statistical techniques 
applied to date, as well as a stronger contextualisation of the unique aspects of this study. 
 
1.1. Cytological and Histopathological Image Analysis Based Studies 
 
Yu et al. [14] developed the PyMLViT (Pyramid Multi-Loss Vision Transformer) algorithm for the 
classification of thyroid cancer from cytological smears. The model aims to solve the problems of multi-
scale structural information extraction and insufficient supervision loss in MIL processes. Pyramid 
token extraction is used to extract features at different scales, and multi-loss fusion modules are used 
to compensate for multi-level losses. In experiments with 560 samples from the Sino-Japanese Union 
Hospital, the PyMLViT model outperformed existing methods with 87.5% accuracy, 88.69% sensitivity 
and 86.62% precision. The model also offers the advantage of low complexity and high explainability. 
 
Chandio et al.[15] proposed a three-layer CNN-based system for early classification of medullary 
thyroid cancer. The first layer includes image preprocessing and segmentation (e.g. Otsu, watershed), 
the second layer includes classification with CNN, and the third layer includes visualisation of the 
results. In the analysis of 5601 cell nuclei obtained from SMBBMU Hospital in Pakistan, the model 
provided 99% accuracy and 99.18% precision. The model performs particularly well in the 
discrimination of eccentric nucleus morphologies and is highly accurate at the cellular level. 
 
Shabrina et al. [16] used ConvNeXt Tiny model and Grad-CAM interpretation method for classification 
of PTC histopathological images. In the study with 1496 WSI images, the model achieved the best result 
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with 84.36% accuracy, recall and precision at 256×256 patch size. Model decisions were visualised 
using Grad-CAM; however, it was emphasised that further architectural improvements are needed due 
to low resolution and excessive learning potential. 
 
Gavade et al. [17] used pre-trained CNN (specifically VGG16) models for automatic classification of 
thyroid cancer subtypes from histopathology images. In the study, problems such as limited data, 
explainability and bias were addressed with Grad-CAM, LRP and fairness-aware analyses. With K-fold 
cross-validation, over 90% accuracy and F1 score were obtained; especially high success was shown in 
the papillary carcinoma class. Model outputs were evaluated by fairness and sensitivity analyses. 
 
Tschuchnig et al. [18] compared patch-based MIL methods for the classification of papillary and 
follicular thyroid nodules. Using a dataset of 40 histology images, features were extracted with 
ResNet18 and three different multiscale combination methods (MC, MA, MM) were tested. The best 
result was obtained with the MM method with 88% accuracy, showing that this method can improve 
classification performance when carefully designed. 
 
1.2. Deep Learning Approaches Based on Ultrasound and CT Images 
 
Zhuang et al. [19] developed an attention-based model called AMIL that combines multiscale 
ultrasound image features. The model performs both patch and frame level classification under weakly 
supervised learning. The highest performance was obtained by combining outputs from different patch 
sizes with an ensemble approach (0.785% AUROC). Visualisation techniques showed that the model 
focused on clinically relevant regions (nodule edges, hyperechoic areas). This method, which can 
provide highly accurate patient-level predictions without relying on segmentation, is remarkable in 
clinical decision support systems. 
 
Zhang et al. [20] proposed three multichannel CNN architectures based on Xception for early diagnosis 
of thyroid cancer. In experiments with DDTI and clinical images, the SIDC model provided up to 98.9% 
accuracy. DIDC and four-channel structures also showed high performance. These structures, which 
show superiority in terms of both accuracy and explainability in CT and USG data, increase clinical 
adaptability. 
 
Nugroho and Frannita [21] compared DenseNet121 and NasNetLarge architectures with transfer 
learning in ultrasound images. In the study with a data set of 348 samples, the NasNetLarge model was 
found to be more successful with 87.14% accuracy and 88.45% AUC. NasNetLarge, which offers more 
stable and accurate results despite its complex structure, stands out in terms of classification success. 
 
Deepana et al. [22] extracted features with various CNN architectures and classified them with different 
ML algorithms. In the study of 118 ultrasound images, the combination of ResNet-50 + XGBoost gave 
the best result with 82.12% accuracy. Other models remained in the range of 79.7%-79.9%. The 
combination of deep learning and classical methods stands out as an effective solution in terms of 
clinical accuracy. 
 
1.3. Recurrence, Risk and Prediction Models with Machine Learning 
 
Arslan and Çolak [23] aimed to predict the risk of recurrence in well-differentiated thyroid cancer 
(Well-DTC) patients with explainable machine learning (XAI) methods. In the data set of 383 patients, 
four variables (Response, Risk, T, N) determined by distance correlation method were used. Fast 
Interpretable Greedy-Tree Sums (FIGS) and Explainable Boosting Machines (EBM) algorithms were 
compared; EBM model showed superior performance with 96.1% accuracy, 99.3% AUC and 91.9% F1 
score. In particular, response to treatment, ATA risk classification, tumour stage and lymph node 
metastasis were the most important predictors. With SHAP, the contribution of each variable to the 
decision was visualised to increase the explainability of the model. 
 
Aida et al. [24] compared ELM and HMM algorithms to assess the probability of recurrence in 
differentiated thyroid cancer (DTC). A dataset containing 383 observations and 16 features balanced 
with SMOTE was used. The ELM model achieved 100% accuracy, sensitivity and specificity with a 90:10 
training-test ratio, while the HMM model gave the best result with 86.36% accuracy and 0.9343% AUC. 
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While HMM's ability to model unexplained situations was highlighted, ELM's high-speed and accurate 
results were especially prominent in unbalanced data classes. 
 
Hegde et al. [25] proposed a hybrid meta-classifier model combining SVM and RF classifiers with PSO 
and GA based feature selection for thyroid cancer prediction. A dataset of 3800 samples from Kaggle 
was used; data preprocessing, balancing with SMOTE and hyperparameter optimisation were 
performed. The model outperformed traditional methods with 98% accuracy, 97% sensitivity and 
0.98% AUC. The combination of PSO, GA and meta-classifier improved the predictive power and 
generalisability, especially in high-dimensional data sets. 
 
Anuhya [26] aimed to determine the most effective model by comparing SVM, KNN, Decision Tree and 
Random Forest algorithms in thyroid cancer classification. In the study, a clinical data set consisting of 
2796 samples including hormone values such as TSH, T3, TT4 and age and gender information was 
used. Preprocessing steps such as missing value removal, one-hot coding and normalisation were 
applied to the data, followed by k-fold cross validation and hyperparameter adjustment. According to 
the results, the Random Forest model outperformed the other algorithms with 99.01% accuracy, 
99.17% sensitivity, 98.68% specificity and 98.92% F1 score and was determined as the most reliable 
model for clinical applications. 
 
Vu et al. [27] developed a machine learning framework for early diagnosis of thyroid nodule 
malignancy. Using 1232 nodule data obtained from 724 patients of the Chinese Medical University, a 
dataset containing 19 features including age, gender, ultrasound findings and blood tests was used. 
Models such as Logistic Regression, Random Forest, AdaBoost, Gaussian Naive Bayes and Decision Tree 
were trained with hyperparameter setting and performance was improved with ensembl methods 
(stacking and voting). The best result was obtained with Voting method with 85.52% accuracy, 87.32% 
AUROC, 83.37% precision and 89.54% recall. The study shows that combining quality data processing 
and ensemble models can significantly improve the accuracy of thyroid cancer diagnosis. 
 
Islam [28] proposed a stacking model based on XGBoost and MLP to predict thyroid diseases. A dataset 
of 9172 instances and 31 features from the UCI ML Repository was used; SMOTE-ENN hybrid sampling 
was applied to eliminate data imbalance, RFE was applied to identify important features, and model 
explainability was supported by SHAP. The outputs produced by the base classifiers (MLP, XGBoost) 
are combined with the logistic regression-based meta-classifier to obtain the final prediction. 
According to the results, the proposed model outperformed classical models such as Random Forest, 
SVM and AdaBoost with 99.78% accuracy, 99.80% F1 score, 99.79% precision and 99.78% recall. SHAP 
analysis clearly explained the contribution of features such as T3, TT4, FTI and TSH to model decisions. 
 
Bharath and Sabitha [29] compared six different machine learning algorithms to predict the probability 
of recurrence in differentiated thyroid cancer (DTC) patients and integrated the best model with a web-
based decision support system. They used 383 samples from the UCI dataset and 16 clinicopathological 
features, including age, gender, radiotherapy history, TNM stages and risk classifications. Ordinal and 
one-hot coding was applied to the data, split with a 60% training to 40% testing ratio, and models (LR, 
DT, RF, SVM, KNN, XGBoost) were trained using Scikit-learn and XGBoost. The best result was obtained 
with XGBoost algorithm with 98.05% accuracy, 97.83% precision and 95.74% recall. By integrating the 
model with Flask backend and HTML/JavaScript interface, an intuitive web interface was developed 
where users can upload test data and get real-time predictions. 
 
1.4. Models Based on Genetic and Molecular Properties  
 
Guo, et al. [30] examined whether thyroid cancer risk can be predicted by genetic markers. Five SNPs 
(rs965513, rs944289, rs116909374, rs966423, rs2439302) associated with papillary thyroid 
carcinoma (PTC) were genotyped in Han Chinese individuals and their predictive power was tested 
with nine different machine learning algorithms. The results showed that SNPs had significant 
statistical associations with PTC; however, AUC values remained between 0.54-0.60 and sensitivity 
rates (28-48%) were low. Furthermore, the familial risk contribution of these SNPs was only 5.98% 
and even the addition of variables such as age/sex did not significantly improve the prediction 
performance. The study emphasises that models based on SNPs alone are inadequate and holistic 
modelling that combines genetic, environmental and interactive factors is needed. 
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Rossing [31] evaluated the potential of molecular classifiers in differentiating papillary and follicular 
thyroid cancers. The diagnostic performance of models generated by microarray-based mRNA and 
miRNA expression analyses were compared. Jarzab et al.‘s SVM-based 19-amplitude model showed 
85.7% sensitivity and 100% specificity; Borup et al.’s 76-probe model showed 94.4% sensitivity and 
95.5% specificity. In addition, miRNAs (miR-221, miR-222) were found to be particularly successful in 
FTC/PTC discrimination. These findings suggest that molecular classifiers have the potential to prevent 
unnecessary surgeries by increasing diagnostic accuracy, especially in cytopathologically unstable 
cases, but these models need further validation before clinical application. 
 
1.5. Explainability (XAI), Bayesian Modelling, and Clinical Decision Support Applications 
 
The thesis presented by Preez [32] at Stellenbosch University explores the potential use of Bayesian 
Neural Networks (BNNs) in thyroid cancer classification. As an alternative to conventional neural 
networks, which often lack robust uncertainty estimation, three different convolutional neural 
network (CNN) architectures—LeNet-5, AlexNet, and GoogLeNet—were implemented using Bayesian 
inference and optimized via the Bayes-by-Backprop method. The models were evaluated in terms of 
both aleatoric and epistemic uncertainty, with results reported separately for each. The dataset 
employed consisted of labeled ultrasound images retrieved from the Thyroid Digital Image Database 
and was subjected to pre-processing steps including region-of-interest (ROI) focusing, segmentation, 
and data augmentation. Although the Bayesian models achieved only a marginal improvement in 
accuracy compared to their classical counterparts, they provided substantial advantages in epistemic 
uncertainty quantification. These insights are particularly valuable in clinical decision support systems, 
where model confidence plays a critical role. In experiments conducted on normalized data, an 
accuracy rate of 94.5% was achieved. The study emphasizes the value of BNN-based approaches in 
reducing false positives and preventing overdiagnosis, particularly in early-stage thyroid cancer 
detection. 
 
1.6. Systematic Reviews and Comprehensive Literature Surveys 
 
The systematic review conducted by Lixandru-Petre et al. [33] comprehensively examines the 
application of machine learning techniques in the early diagnosis, metastasis detection, and recurrence 
prediction of thyroid cancer. A total of 1,231 studies published between 2014 and 2024 were retrieved 
from six major databases, of which 203 were reviewed in detail and 21 were deemed eligible for in-
depth analysis. The review is structured around three primary themes: (1) malignancy classification, 
(2) metastasis prediction, and (3) survival/recurrence forecasting. Commonly utilized algorithms 
include Random Forest, XGBoost, SVM, MLP, Logistic Regression, and Naive Bayes, typically trained on 
datasets containing electronic medical records, clinical, biochemical, ultrasound, and genetic data (e.g., 
BRAF V600E mutations). Random Forest and XGBoost models stood out with high AUC scores, and the 
integration of SHAP analysis, SMOTE, and ensemble strategies was shown to enhance both model 
interpretability and predictive performance. While the review highlights the potential of ML-driven 
systems in clinical decision-making, it also draws attention to challenges such as class imbalance, 
ethical considerations, limited generalizability, and the need for explainability. 
 
Anari et al. [34] conducted an extensive review of deep learning methods applied to thyroid cancer 
diagnosis. The study evaluates recent architectures introduced post-2018, including CNNs, GANs, 
Autoencoders, LSTM, Deep Belief Networks (DBNs), and RNNs. Model performances were compared 
using metrics such as accuracy, sensitivity, and specificity. Among the models reviewed, VGG16 
achieved 99% accuracy and 94% sensitivity, while GAN-based models reached accuracy rates as high 
as 94.30%. Sequential models like LSTM and RNN also performed strongly, with reported accuracies 
exceeding 98%. The review identifies CNN-based systems as the most widely adopted and effective 
approach and notes that GANs offer enhanced classification performance when used with multimodal 
imaging inputs. 
 
Ilyas et al. [35] performed a systematic review focusing on deep learning methods for thyroid cancer 
diagnosis using diverse medical imaging modalities. From a pool of 2,149 publications between 2017 
and 2021, 40 studies were selected for detailed analysis. The algorithms investigated included CNNs, 
Inception, ResNet, VGG16, RCNN, Bi-LSTM, and ensemble models. The datasets utilized in these studies 
spanned both private and publicly available ultrasound, CT, DICOM, and JPEG-format images. Key 
evaluation metrics included sensitivity, specificity, accuracy, and AUC. Based on the compiled analysis 
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matrix, the average sensitivity was reported at 89.5% and specificity at 84.4%. CNN and ResNet 
architectures yielded the highest performance, with some models achieving accuracy rates up to 98%. 
The findings underscore the reliability of deep learning in thyroid nodule classification, especially 
when supported by large, annotated datasets. 
 
Habchi et al. [36] provide a detailed review of artificial intelligence (AI) techniques employed in thyroid 
cancer diagnosis, covering classification, segmentation, and prediction tasks. The review discusses 
supervised methods (CNN, SVM, MLP, RBF, Logistic Regression), unsupervised approaches (k-means, 
PCA), deep learning techniques (DAE, RNN, GAN), and ensemble strategies (bagging, boosting) in depth. 
Public datasets such as DDTI, TCGA, SEER, GEO, and ThyroidOmics, along with private clinical 
repositories, were analyzed. CNN and RNN-based models were found to deliver accuracy rates 
approaching 98%, while methods like XGBoost, AdaBoost, and Bagging enhanced sensitivity and 
specificity through ensemble integration. The study highlights AI’s contributions to diagnostic 
accuracy, time efficiency, and reduced inter-observer variability but also acknowledges major 
challenges, including ethical concerns, data privacy, and the need for clinical generalizability. 

 
2. Material and Methods (Materyal ve Yöntem) 

2.1. Datasets 
 
In this study, five distinct and content-rich datasets were utilized to develop machine learning models 
aimed at the diagnosis, risk analysis, and classification of thyroid disorders. Each dataset was derived 
from different clinical contexts and patient populations, encompassing biochemical, symptomatic, and 
demographic attributes. Prior to model training, all datasets underwent preprocessing procedures 
including missing data analysis, categorical encoding, and class imbalance mitigation. 
 
The first dataset (TD1) [37] comprises clinical and treatment-related records of hundreds of patients 
diagnosed with well-differentiated thyroid cancer. This dataset includes variables such as age, sex, 
tumor staging information (T, N, M), ATA risk classification, and treatment response. It was employed 
in the development of explainable machine learning algorithms focused on recurrence prediction. Since 
the dataset was complete with no missing values, minimal preprocessing intervention was required. 

           

Figure 1(Left) & Figure 2(Right): TD1(Left) & TD2(Right) Correlation Matrixes 

 
The correlation matrix for the first dataset (TD1) is presented in Figure 1. It provides a general 
overview of the linear relationships among the variables. Several variable pairs exhibit strong positive 
or negative correlations, indicating the presence of recurring structural patterns within the dataset. In 
contrast, features with low correlation coefficients may be considered as independent variables that 
can contribute unique information during the modeling process. 
 
The second dataset (TD2) [38] is a balanced, resampled dataset designed for symptom-based thyroid 
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disorder prediction. It includes both subjective symptoms—such as fatigue, hair loss, changes in heart 
rhythm, constipation, and depression—and biochemical indicators. Encoded through numerical 
transformation, the data serve as a strong foundation for symptomatic classification of thyroid 
dysfunctions. Class imbalance was mitigated using SMOTE-based oversampling techniques. 
 
The correlation structure of the second dataset is shown in Figure 2. In general, it reveals weak linear 
relationships and suggests a more scattered and independent feature composition. The predominance 
of low correlation coefficients implies that the variables carry relatively independent information and 
that the dataset is more suitable in terms of low multicollinearity. This structure indicates a reduced 
risk of information redundancy in the modeling phase. 
 
The third dataset (TD3) [39] contains biochemical measurements and clinical histories of patients 
diagnosed with hypothyroidism. It includes detailed medical variables such as hormone levels (TSH, 
T3, TT4), clinical background, medication history, surgical interventions, pregnancy, and psychiatric 
records. This dataset, which has no missing values, was evaluated using high-performance supervised 
learning algorithms for hypothyroidism classification. It provides a solid foundation for modeling 
nonlinear relationships based on hormone profiles. 
 
The correlation matrix for the third dataset is provided in Figure 3. It reveals that linear associations 
across variables are generally weak. However, a limited number of variable pairs exhibit moderate 
correlations. This structure suggests that most features convey independent information, although 
certain groups may demonstrate structural clustering with shared variance. The predominance of 
weak correlations indicates a stable variable structure with minimal risk of multicollinearity. 

        

Figure 3(Left) & Figure 4(Right): TD3(Left) & TD4(Right) Correlation Matrixes 

 
The fourth dataset (TD4) [40] consists of multidimensional clinical data, incorporating hormone 
profiles alongside patient symptoms, treatment history, and diagnostic variables. Containing tens of 
thousands of records, this dataset stands out due to its relatively high rate of missing values, 
particularly concentrated in critical variables such as hormone measurements. Accordingly, various 
missing data imputation techniqueswere applied. This dataset was primarily used in modeling 
processes aimed at predicting the impact of hormonal levels on thyroid dysfunction. 
 
The correlation matrix for the fourth dataset is presented in Figure 4. It exhibits a structurally sparse 
and balanced distribution with predominantly low-level correlations. Nevertheless, noticeable 
correlation blocks were observed among certain variable groups. Specifically, significant linear 
relationships were detected between some measurement-based variables, suggesting tendencies 
toward shared variance. This indicates that potential redundancy in the dataset may be localized within 
specific subdomains and should be carefully evaluated prior to modeling. 
 
The fifth dataset (TD5) [41] represents a large-scale population-based sample comprising records from 
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hundreds of thousands of individuals. It includes demographic characteristics (age, sex, ethnicity), 
lifestyle factors (smoking, obesity, iodine intake), family history, and various hormone measurements. 
All of which are associated with the risk of developing thyroid cancer. Due to its high dimensionality 
and volume, this dataset was primarily utilized for risk scoring and segmentation modeling purposes. 

 

Figure 5: TD5  Correlation Matrix 

 
Figure 5 illustrates the correlation structure of the TD5 dataset, which is composed of a large-scale 
population-based sample including demographic attributes (age, sex, ethnicity), lifestyle factors (e.g., 
smoking, obesity, iodine intake), family history, and multiple biochemical markers. The correlation 
matrix reveals that the majority of variable pairs exhibit very weak linear associations, with correlation 
coefficients close to zero. This pattern suggests that the features in TD5 carry largely independent 
information, supporting a multicollinearity-free environment for model training. 
 
A small number of moderate correlations were observed, such as those between age and thyroid 
hormone levels (e.g., TSH), and between lifestyle factors and clinical measurements, which may reflect 
domain-specific physiological linkages. These moderate associations were further examined during 
feature importance analysis to ensure they did not introduce redundancy. Overall, the sparse 
correlation pattern in TD5 provides a favorable foundation for training robust and generalizable 
machine learning models, as it reduces the risk of collinearity-induced performance distortion. 
 
The correlation matrix corresponding to the fifth dataset illustrates a pattern characterized 
predominantly by weak linear associations and low collinearity. Most variables exhibited correlation 
coefficients close to zero, indicating that the dataset comprises features carrying highly independent 
information. Nevertheless, a limited number of variable pairs demonstrated moderate correlations, 
which may reflect thematic linkages or shared variance structures within the data. Overall, this dataset 
presents a multicollinearity-free structure, offering a flexible and robust foundation for model 
development. 
 
When considered collectively, these datasets provide a holistic representation of the biochemical, 
clinical, and symptomatic dimensions of thyroid diseases. They enable the development of models with 
high accuracy, generalizability, and clinical applicability. All datasets were obtained from publicly 
available resources on Kaggle. 
 
2.2. Data Preprocessing 
 
The success of machine learning models is not solely determined by algorithm selection, but also 
critically depends on the quality of the input data. Accordingly, an extensive preprocessing pipeline 
was implemented on the medical datasets used in this study. The objective was to minimize data-
related artifacts, reduce irrelevant variance, and address class imbalance—factors known to adversely 
affect model learning. 
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2.2.1. Handling Missing Values 
 
All datasets were carefully examined for missing or inconsistent values. Where necessary, affected 
samples were either excluded or completed using appropriate imputation methods such as mean or 
median filling. This process helped preserve the overall accuracy of the models while preventing 
artificial data distortions during learning. 
 
2.2.2. Feature Scaling and Normalization 
 
Given that certain algorithms (e.g., SVM, ANN) require features to be on a comparable scale, Min-Max 
normalization was applied to all numerical variables. This transformation scaled the features into a 
[0,1] range, thereby eliminating the influence of outlier values and ensuring stable convergence during 
training. 
 
2.2.3. Addressing Class Imbalance 
 
Class imbalance, a common issue in medical datasets, was also observed in this study. To mitigate the 
underrepresentation of minority classes, the Synthetic Minority Over-sampling Technique (SMOTE) 
was employed. By synthetically generating new instances of minority classes, SMOTE helped achieve a 
balanced class distribution and contributed to improved recall and F1 scores, particularly in 
imbalanced classification tasks. 
 
2.2.4. Vector Transformation and Matrix Structuring 
 
Before initiating the model training process, all features were vectorized and structured using a 
standardized transformation schema that was consistently applied in both training and testing phases. 
Variables were reformatted into processed representations to ensure uniform model input. This 
approach eliminated data leakage and enhanced the reliability of cross-validation results. 
 
This preprocessing framework ensured the structural and statistical integrity of the datasets while 
minimizing noise. As a result, the machine learning models were trained solely on informative, clean 
representations of the data, allowing performance metrics to reliably reflect the true quality of the 
input features. 
 
2.2.5. Hyperparameter Optimization 
 
The performance of machine learning algorithms depends not only on data quality or model selection, 
but also critically on the proper tuning of algorithm-specific hyperparameters. Therefore, systematic 
hyperparameter search procedures were employed in this study. Parameter combinations were 
evaluated based on both overall accuracy and class-specific performance metrics. 
 
Two distinct strategies were adopted for hyperparameter tuning: 
 

• For some models, empirically determined fixed values were used. 
• For others, hyperparameters were optimized through validation-based optimization 

techniques. 
 
In particular, for gradient boosting decision tree (GBDT) models and boosting-based frameworks, the 
Optuna library was utilized for hyperparameter optimization. Within this framework, the objective 
function was defined directly over model output, and performance was optimized on 5-fold stratified 
cross-validation at each trial. This approach enabled the models to reach more flexible decision 
boundaries and enhanced generalizability. The selection of optimal parameters was guided not only by 
accuracy, but also by F1 score and ROC-AUC values. The flowchart in Figure 6 presents the structured 
preprocessing stages conducted prior to model training. It begins with data loading and continues 
through missing value imputation, categorical encoding, scaling, class balancing using SMOTE, and final 
transformation into model-ready matrix formats. These standardized steps ensured consistency and 
comparability across heterogeneous datasets. 
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Figure 6. Workflow Diagram of the data preprocessing applied across all five thyroid datasets 

 
2.3. Algorithms 
 
In this study, a diverse set of supervised machine learning algorithms was employed for the diagnosis, 
risk assessment, and classification of thyroid disorders. These algorithms are built upon different 
statistical assumptions and mathematical foundations. The selection of models was influenced by the 
challenges typical to biomedical data, including class imbalance, high dimensionality, missing values, 
and the need for both predictive accuracy and model explainability in clinical decision-making contexts. 
 
The selected algorithms are primarily designed to perform classification tasks, aiming to correctly 
assign data samples into predefined categories. Each algorithm establishes a decision boundary based 
on independent variables to infer the target class. These decision-making mechanisms range from 
linear discriminant functions to deep neural architectures and ensemble models such as random 
forests. This variety was intentionally chosen to accommodate the structural properties of different 
datasets and to maximize overall performance. 
 
From a mathematical standpoint, the algorithms were evaluated using statistical measures such as 
accuracy, sensitivity, specificity, and F1-score [42][43]. To assess model performance, cross-validation 
and resampling techniques were employed, particularly to prevent overfitting in the presence of 
imbalanced class distributions. In addition, feature selection and dimensionality reduction were 
implemented to minimize model complexity and optimize computational efficiency. 
 
Each algorithm presented in the following sections is discussed in terms of its theoretical framework, 
decision function, parameter configurations, and the impact of related hyperparameters. Moreover, the 
applicability of each model is evaluated not only from a statistical accuracy perspective, but also in 
terms of its potential integration into medical decision support systems. The goal is not solely to 
identify the highest-performing model, but to define models capable of producing reliable and 
interpretable decisions in real-world clinical scenarios. 
 
2.3.1. Artificial Neural Network (ANN) 
 
Artificial Neural Networks (ANN) are computational models inspired by the neuronal architecture of 
the human brain and consist of multiple layers of artificial neurons [44]. In this study, the ANN model 
was trained under the supervised learning paradigm to perform classification tasks related to thyroid 
disorders. The primary objective of the model is to learn nonlinear relationships between input 
features and target classes, thereby enabling high-accuracy predictions on previously unseen samples. 
 
The ANN architecture consists of an input layer, one or more hidden layers, and an output layer [45]. 
In the input layer, each variable in the feature vector is represented by a distinct neuron. Neurons in 
the hidden layers are equipped with nonlinear activation functions commonly the Rectified Linear Unit 
(ReLU) in this study which allow the network to model complex decision boundaries. The output layer 
uses activation functions suitable for classification tasks, such as sigmoid or softmax, and the outputs 
are expressed as class probabilities. 
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During training, the cross-entropy loss function was used to measure the prediction error. The weights 
of the network were updated via the backpropagation algorithm to minimize this loss. Optimization 
was typically performed using Stochastic Gradient Descent (SGD) or the Adam optimizer [46]. To 
prevent overfitting, regularization techniques such as dropout and early stopping were applied. 
 
In this study, the ANN was implemented on high-dimensional and multivariate thyroid datasets and 
produced meaningful classification results even in cases involving complex feature interactions. These 
outcomes demonstrate ANN’s capacity to learn nonlinear patterns in the data and highlight its potential 
applicability in clinical decision support systems. However, the limited explainability of ANN models 
and their sensitivity to hyperparameter tuning represent important limitations that must be carefully 
considered in terms of interpretability and generalizability.  The input to the artificial neural network 
is a vector x∈R where each component of the vector corresponds to a specific input feature. This is 
formally shown in Equation (1): 
 

𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑑

] ^(𝑇) (1) 

 
Each hidden layer receives the output from the preceding layer, applies a linear transformation through 
weight matrices and bias terms, and then introduces nonlinearity via an activation function. The two 
hidden layers constructed in this study are formally defined in Equations (2) and (3): 
 

ℎ1 = 𝜙(𝑊1𝑥 + 𝑏1) (2) 
 

ℎ2 = 𝜙(𝑊2ℎ1 + 𝑏2) (3) 
 
In the final layer of the model, a linear combination is computed using the output of the previous hidden 
layer, followed by the application of a sigmoid (or softmax) activation function. The resulting value 
represents the classification probability. The sigmoid function is typically used in binary classification 
tasks, whereas the softmax function is preferred for multi-class problems. Equation (4) represents the 
output layer using a sigmoid activation function: 
 

𝑦
^

= 𝜎(𝑊𝐿ℎL−1 + 𝑏𝐿) (4) 

 
To quantify the difference between the model's prediction and the true label, binary cross-entropy is 
used. This loss function serves as the objective to be minimized during the learning process. The 
corresponding formulation is given in Equation (5): 
 

ℒ = −(𝑦 ⋅ log(𝑦
^

) + (1 − 𝑦) ⋅ log(1 − 𝑦
^

)) (5) 

 
 
 
Using derivatives computed through backpropagation, the network's weights and bias terms are 
updated. This process adjusts the parameters in a direction that reduces the loss function at each 
iteration. Equations (6) and (7) respectively define the weight and bias update rules: 
 

𝑊𝑙 ← 𝑊𝑙 − 𝜂
𝜕ℒ

𝜕𝑊𝑙
 (6) 

 

𝑏𝑙 ← 𝑏𝑙 − 𝜂
𝜕ℒ

𝜕𝑏𝑙
 (7) 

 
2.3.2. CatBoost 

CatBoost is a gradient boosting-based machine learning algorithm that stands out for its high predictive 
accuracy and low susceptibility to overfitting [47], particularly in datasets with numerous categorical 
variables. Developed by Yandex, CatBoost is specifically designed to minimize the need for extensive 
feature engineering, enabling direct modeling of datasets where categorical features are prevalent. In 
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this study, the CatBoost algorithm was employed to classify the risk levels associated with thyroid 
disorders and was able to effectively learn complex relationships among features in the dataset. 
 
Unlike traditional gradient boosting algorithms, CatBoost utilizes a sequential learning strategy known 
as ordered boosting [48]. This approach mitigates target leakage by carefully controlling the order in 
which training samples are used during tree construction. Furthermore, instead of using random target 
mean encoding for categorical variables, CatBoost employs ordered statistics, which improves the 
model's generalization capability. The mathematical formulation underlying the CatBoost prediction 
function is defined in Equation (8): 
 

𝑦
^

= ∑ 𝛾𝑚 ⋅ ℎ𝑚(𝑥𝑖)

𝑀

𝑚=1

 (8) 

 
 
 
 
The log-loss function used by the CatBoost algorithm for classification tasks is presented in Equation 
(9). This loss function quantifies the divergence between predicted probabilities and actual class labels 
and serves as the objective function during training: 
 

ℒ = − ∑(𝑦𝑖 ⋅ log(𝑦
^

𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑦
^

𝑖))

𝑛

𝑖=1

 (9) 

 
2.3.3. LightGBM 
 
LightGBM is a memory-efficient and computationally optimized algorithm based on the gradient 
boosting framework over decision trees [49]. It is particularly effective for large-scale and high-
dimensional datasets, where it significantly reduces training time while improving predictive accuracy. 
Unlike traditional Gradient Boosted Decision Tree (GBDT) algorithms, LightGBM is characterized by its 
histogram-based tree construction and leaf-wise growth strategy, which together enhance both 
performance and scalability [50]. 
 
In this study, LightGBM was employed for the classification of thyroid diseases and demonstrated 
notable performance in terms of accuracy, class discrimination capability, and overall learning 
efficiency. The model’s parameters were carefully configured, taking into account class imbalance and 
the multivariate nature of the data. As a result, statistically significant outcomes were achieved at the 
end of the training process. 
 
LightGBM approximates the prediction function 𝑓(𝑥)  using an ensemble of sequential decision trees. 
Each 𝑚-th tree is constructed to correct the residual errors of the previous trees. The general 
formulation of the model is given in Equation (10):   
 

𝑦
^

= ∑ 𝑓𝑚(𝑥𝑖)

𝑀

𝑚=1

 (10) 

 
The model's loss at each iteration is defined as shown in Equation (11). This formulation represents 
the objective function that is minimized during training through gradient-based optimization: 
 

ℒ𝑚 = ∑ 𝑙(𝑦𝑖 , 𝑦
^

𝑖 + 𝑓𝑚(𝑥𝑖)) + 𝛺(𝑓𝑚)

𝑛

𝑖=1

 (11) 

 
In this study, the LightGBM model was positioned as a highly generalizable classifier with strong 
discriminative power between classes, particularly in handling complex and multi-dimensional thyroid 
data. The model was configured by tuning hyperparameters such as tree depth, number of leaves, and 
learning rate. Its performance was optimized to reduce the impact of class imbalance. 
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2.3.4. Random Forest 
 
Random Forest is a supervised learning algorithm based on the principle of ensemble learning, 
combining multiple decision trees to improve predictive performance [51]. It is widely known for its 
high accuracy and robustness against overfitting. This approach aggregates the predictions of a large 
number of decision trees, each trained on a random subset of the data and features, and final 
classification is made via a majority voting mechanism. 
 
In this study, the Random Forest algorithm was implemented for the classification of thyroid disorders 
and trained using a large ensemble of 1000 decision trees. The model yielded balanced results even 
under varying class representations, making it a preferred choice due to its limited tendency to overfit. 
The incorporation of randomness throughout the training process served as a key factor in enhancing 
the model’s generalizability. 
 
A Random Forest model consists of 𝑀 decision trees. Each tree is independently trained on a bootstrap-
sampled subset of the data. The final classification decision is made by majority voting across all trees 
[52]. This decision mechanism is formally expressed in Equation (12): 
 

𝑦
^

= mode{ℎ1(𝑥), ℎ2(𝑥), ⋯ , ℎ𝑀(𝑥)} (12) 

 
Each individual decision tree within the Random Forest is constructed following the procedure below: 

• A bootstrap sample is drawn randomly from the training dataset. 
• At each node, only a random subset of features is considered for splitting. 
• The tree is grown to its full depth without pruning. 

 
The primary advantage of this structure lies in maintaining low correlation among trees, thereby 
improving the ensemble's generalization capability and reducing variance. 
 
In this study, the Random Forest model was implemented with a forest comprising 1000 decision trees. 
The model was capable of evaluating complex multivariate patterns in the thyroid dataset in parallel, 
reducing the local biases of individual trees and producing more stable classification outcomes. The 
results in terms of accuracy, error-free class prediction, and model stability demonstrate that Random 
Forest provides a robust foundation for medical classification problems. 
 
2.3.5. Support Vector Machine (SVM) 
 
Support Vector Machine (SVM) is a powerful algorithm designed for both linear and non-linear 
classification tasks [53], with a strong capability to distinguish between classes. Its core objective is to 
find the optimal decision boundary that maximizes the margin between different class distributions. 
This property contributes to the model's high generalizability and robustness in classification 
problems. 
 
In this study, the SVM algorithm was applied to the thyroid dataset, and the Radial Basis Function (RBF) 
kernel was selected to handle cases where the classes are not linearly separable in the input space. By 
projecting the input data into a higher-dimensional feature space, the RBF kernel enables linear 
separation in transformed dimensions. The model was configured with hyperparameters  𝐶=1.0 and 
𝛾=0.1 achieving a balance between classification margin width and error sensitivity. SVM learns a 
hyperplane defined by the equation w^T𝑥+𝑏=0, which maximizes the margin between classes [54]. The 
optimization problem to be solved is expressed in Equation (13): 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
∥ 𝑤 ∥2 (13) 

 
For datasets that are not linearly separable, kernel functions are employed to map the input data into 
a higher-dimensional feature space where linear separation becomes feasible. In this study, the Radial 
Basis Function (RBF) kernel was utilized, and it is defined in Equation (14) as follows: 
 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥)2 (14) 
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This function measures the similarity between two instances and enables the model to construct non-
linear decision boundaries. Smaller values of 𝛾 produce smoother decision surfaces, whereas larger 
values make the model more sensitive to individual data points. 
 
The SVM model was specifically designed to separate overlapping class distributions where clear linear 
separation was not possible. The use of the RBF kernel enabled the transformation of the input space 
into higher-dimensional representations, allowing the construction of an effective decision boundary 
for non-linear structures. The selected values for 𝐶 and 𝛾 were optimized to balance model complexity 
and error tolerance. As a result, the SVM provided robust separation between classes in the thyroid 
dataset, achieving high accuracy and low overall error. 
 
2.3.6. Extreme Gradient Boosting (XGBoost) 
 
XGBoost is an optimized and regularized extension of the Gradient Boosted Decision Trees (GBDT) 
framework [55]. This algorithm incorporates second-order derivative information, regularization 
terms, and parallel computation strategies to improve model generalizability. It is particularly effective 
for large-scale and irregular datasets, offering high accuracy and resistance to overfitting. 
 
In this study, the XGBoost algorithm was employed to classify thyroid diseases and was optimized to 
learn the complex relationships among various features. The model’s hyperparameters were 
empirically tuned, and the implementation was carried out using the XGBClassifier interface. The 
resulting classification performance was found to be satisfactory in terms of both accuracy and class 
separation. 
 
XGBoost constructs 𝑀 weak learners sequentially, with each learner aiming to minimize the residual 
error of the previous predictions [56]. The general form of the model is presented in Equation (15): 
 

𝑦
^

= ∑ 𝑓𝑚(𝑥𝑖)

𝑀

𝑚=1

 (15) 

 
The regularized objective function optimized at each boosting iteration is defined in Equation (16). 
This function balances the model's predictive accuracy with its complexity by incorporating both the 
loss term and a regularization penalty Equation(17): 
 

ℒ𝑡 = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖

^
+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡)

𝑛

𝑖=1

 (16) 

 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 (17) 

 
The model was applied to a high-dimensional and feature-rich thyroid dataset and demonstrated 
superior classification accuracy, particularly in cases with sharp inter-class boundaries. By optimizing 
both the secondary loss and regularization terms, the model's tendency to overfit was mitigated, while 
complex inter-feature dependencies were effectively captured. In this respect, XGBoost has been 
recognized as a core component of high-performance and interpretable decision support systems. 
 
2.3.7. Stacking Classifier 
 
Stacking, or Stacked Generalization, is an ensemble learning approach that integrates multiple machine 
learning models under a unified architecture, leveraging the individual strengths of each to enhance 
predictive performance [57]. In this framework, the outputs of the base learners are used as input 
features for a meta-model, which is responsible for producing the final classification output. 
 
In this study, the stacking model was constructed using LightGBM and XGBoost as base learners, while 
Logistic Regression served as the meta-learner. This configuration was particularly effective for 
medical datasets characterized by class imbalance and non-linear decision boundaries, allowing for a 
more flexible and robust classification scheme by combining learners with distinct decision surfaces. 
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The architecture comprises two levels, and the ensemble prediction function is defined in Equation 
(18): 
 

𝑦
^

= ℎmeta(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐾(𝑥)) (18) 

 
2.4. Model Evaluation Metrics 
 
The success of machine learning models should not be evaluated solely based on overall accuracy but 
also by considering class-specific performance metrics[58]. This is particularly critical in medical 
datasets where class imbalance is common, and assessing the model’s ability to correctly classify rare 
cases is essential. Accordingly, this study employed a variety of evaluation metrics, including Accuracy, 
Precision, Recall, F1-Score. 
 
2.4.1. Accuracy 
 
Accuracy measures the proportion of correctly classified instances among all samples. Although it is 
often the primary reference metric, it may be misleading in problems with imbalanced class 
distributions. The calculation of accuracy is defined in Equation (19): 
 

Accuracy =
TP + TN

TP + TN + FP + FN
 (19) 

 
 
 
2.4.2. Precision 
 
Precision quantifies how many of the instances predicted as positive are actually true positives. It is 
especially important in contexts where the cost of false positives is high. Precision tends to decrease 
when the number of false positives increases. The formula for calculating precision is provided in 
Equation (20): 
 

Precision =
TP

TP + FP
 (20) 

2.4.3. Recall 
 
Recall, the proportion of actual positive cases that are correctly identified by the model, is a critical 
metric in medical diagnosis where missing true cases can have serious consequences. It reflects the 
model’s sensitivity and is particularly important when false negatives must be minimized. The 
calculation is shown in Equation (21): 
 

Recall =
TP

TP + FN
 (21) 

 
 
2.4.4. F1-Score 
 
F1-Score is the harmonic mean of Precision and Recall, and it is used to balance both metrics, 
particularly in cases with imbalanced class distributions. It is a robust measure when both false 
positives and false negatives are important. The calculation is given in Equation (22): 
 

F1 Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 (21) 

 
The performance metrics discussed above were computed individually for each algorithm and served 
as primary references in the comparative analysis. Among these, Accuracy, F1-Score, Precision, and 
Recall were prioritized in the evaluation of decision support systems due to their robustness in the 
presence of class imbalance, a common challenge in medical datasets. 
 
2.5. Model Validation Methods 
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In multi-class and imbalanced medical datasets, evaluating machine learning models requires more 
than conventional performance indicators. It must also incorporate assessments of model stability and 
generalizability. Therefore, this study adopted systematic cross-validation techniques that go beyond 
standard validation, maintaining class distribution while enabling performance evaluation across 
multiple sampling structures. 
 
2.5.1. Stratified K-Fold Cross-Validation 
 
As the primary validation strategy, Stratified K-Fold Cross-Validation was employed to ensure 
representative class distribution within each fold [59]. This method divides the dataset into 𝑘 subsets 
(folds) while preserving the proportion of each class in every subset, in alignment with the original 
data distribution. In each iteration, one fold is used for testing while the remaining 𝑘−1 folds are used 
for training. This approach minimizes both intra-class and inter-class variance, providing a more 
reliable assessment of model performance. 
 
In this study, all algorithms were validated using a 5-fold stratified cross-validation structure (𝑘=5), 
enabling model performance to be measured repeatedly across different sample configurations. This 
method has proven particularly effective for health data scenarios where minority class representation 
is critical. 
 
2.6. Systematic Performance Assessment via Cross-Validation Score 
 
Throughout the validation process, Cross-Validation Scores were actively utilized to conduct 
comparative analyses both across algorithms and within hyperparameter configurations. For each fold, 
core evaluation metrics such as Accuracy, F1-Score, and ROC-AUC were calculated individually. Final 
model decisions were made based on the mean performance across folds, providing a statistically 
robust basis for selecting optimal model configurations. 
 

• Accuracy 
• Recall 
• F1 Score 
• Precision 

 
Cross-validation scores enabled the evaluation of each model under multiple independent testing 
scenarios, rather than relying on a single train-test split. This approach assessed whether the models 
produced stable and consistent results, and models exhibiting high variance or instability were either 
excluded or subjected to hyperparameter adjustments. 
 
This study focuses on the systematic application and evaluation of advanced classification approaches 
on high-dimensional and imbalanced medical datasets, with the aim of enhancing the reliability of 
clinical decision support systems. The applied methodologies were not only designed to improve 
classification accuracy, but were also optimized for model stability, explainability, and generalizability. 
 
By implementing multiple models based on distinct mathematical principles, both linear and nonlinear 
patterns in the data were effectively captured. The flexibility of the decision boundaries was enhanced 
through algorithmic diversity, and the inclusion of ensemble and meta-modeling strategies produced 
more robust classification outcomes beyond individual learners. 
 
The model evaluation framework was not limited to overall accuracy but was grounded in a 
multidimensional set of metrics, including class-wise sensitivity, specificity, F1-score, precision, and 
recall. This approach enabled a more balanced interpretation of performance, especially in detecting 
minority classes, where traditional metrics often fall short. 
 
Moreover, validation mechanisms extended beyond conventional data partitioning strategies. They 
incorporated cross-validation structures that preserved class distribution and minimized variance. 
These mechanisms were directly integrated into hyperparameter tuning workflows, ensuring not only 
theoretical soundness but also practical reliability of the resulting models. 
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In conclusion, this multi-layered approach has provided a holistic framework for improving model 
performance, reducing instability, limiting overfitting risks, and enhancing inter-class discrimination. 
This structure is not only applicable to medical classification problems, but also represents a scalable 
and reproducible solution for a wide range of data analytics applications with similar structural 
characteristics. 
 

3. Results and Discussion (Sonuçlar ve Tartışma) 
 
This study aimed to address key challenges in classification problems—namely generalizability, 
statistical stability, and inter-class discrimination performance—through an integrated and systematic 
approach. Rather than focusing solely on output generation, the modeling process was structured 
around a methodologically validated, multi-metric evaluation framework that ensured analytical rigor. 
The framework, developed on datasets with diverse distribution characteristics and class imbalances, 
went beyond conventional accuracy-based strategies and established a comprehensive, balanced, and 
generalizable analytical foundation. The overall study workflow is illustrated in Figure 7.  
 
Instead of the traditional train-test split, a systematic K-fold cross-validation strategy was applied to 
each dataset, enabling the statistical reliability of model performance to be assessed across different 
sample partitions. The Stratified K-Fold structure was employed to minimize measurement bias caused 
by class imbalance by preserving class proportions within each fold. This validation strategy aimed not 
only to achieve high accuracy but also to ensure that such performance could be consistently sustained 
across various data partitions. 
 
Furthermore, model performance was tested across multiple sample configurations, rather than 
relying on a single split, allowing for the evaluation of repeatability and robustness. This strategy did 
not accept good performance on a single subset as sufficient, but rather prioritized models that could 
maintain similar accuracy levels across diverse sampling distributions. As a result, the evaluation 
framework increased model resilience to real-world uncertainties and improved the overall reliability 
of the findings. 
 

 
Figure 7: Workflow of the Study 
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The study integrated not only basic classifiers but also parametrically optimized models, ensemble 
learning methods, and meta-modeling architectures. For parameter-sensitive models, structured 
search techniques were implemented; however, these were positioned not merely as accuracy-
boosting tools but as support mechanisms for systematic evaluation. The inclusion of meta-classifiers 
in ensemble structures contributed to more balanced decision surfaces, particularly in cases with 
challenging class separability. 
 
Model performance was evaluated not only through overall accuracy but also using class-specific 
metrics such as sensitivity, precision, and F1-score. This multi-metric approach enabled more context-
aware interpretations, especially in detecting underrepresented classes where traditional accuracy 
might fail. In scenarios involving class imbalance, the evaluation process prioritized metrics that 
treated each class equitably, preventing bias toward the majority class. 
 
Additionally, the outputs of certain classifiers were not directly used for final decisions; instead, they 
were fed into higher-level meta-learners. This meta-modeling strategy served as a stabilizing 
mechanism in scenarios where class discrimination performance was relatively low. The ensemble 
structure allowed the weaknesses of individual base learners to be mitigated by the meta-classifier, 
resulting in more robust and consistent classification outcomes. Consequently, the system was 
enhanced not only in terms of accuracy but also in decision consistency and output stability. 
 
The study also evaluated the capacity of models to correctly identify negative classes by analyzing 
secondary metrics derived from confusion matrices. Metrics such as specificity were included to assess 
the impact and spread of false classifications, thus improving the operational applicability of the 
models. In this sense, the evaluation framework addressed not only technical accuracy but also 
practical implications required in decision support systems that demand high sensitivity and low error 
tolerance. 
 
Following this comprehensive evaluation, the quantitative performance outcomes of all applied models 
across the five datasets are presented comparatively in Tables 2 through 18. 
 

Table 1: Performance Metrics on Training Data for CatBoost Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.996732 0.997701 0.995413 0.996747 
TD2 0.963708 0.963709 0.964185 0.963708 
TD3 0.997863 0.998840 0.999670 0.999820 
TD4 0.963736 0.947180 0.965053 0.963736 
TD5 0.674885 0.569707 0.759580 0.674885 

 
Table 2: Performance Metrics on Test Data for CatBoost Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.987013 0.986893 0.987233 0.987013 
TD2 0.830637 0.829942 0.830134 0.830642 
TD3 0.989404 0.989230 0.989253 0.989404 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.65648 0.540073   0.579687 0.656480 

 
The performance of the CatBoost algorithm across five datasets with varying structural characteristics 
and class distributions provides meaningful insights into the model’s generalizability and stability. In 
particular, for TD1 and TD3, the model consistently achieved accuracy rates above 98% in both training 
and test phases, indicating high robustness. For these datasets, precision, recall, and F1-score values 
were closely aligned, demonstrating that the model was capable of distinguishing positive and negative 
classes with comparable effectiveness. Similarly, in TD4, the training and test performances were 
nearly identical, suggesting that CatBoost maintained resilience against overfitting and exhibited a 
stable decision boundary across different data partitions. The training phase results for CatBoost are 
provided in Table 1. 
 
In contrast, a noticeable decline in test performance was observed for TD2 and TD5, highlighting the 
algorithm’s sensitivity to data complexity and class imbalance. As shown in Table 2, while the model 
achieved high accuracy during training on TD2, its performance dropped by approximately 13% on the 
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test set, indicating a risk of overfitting. In the case of TD5, both training and test metrics were relatively 
low, implying that the dataset presents inherent modeling challenges. Nevertheless, the limited gap 
between training and test scores indicates that the model retained a reasonably stable learning 
capacity despite data irregularities. 
 
In conclusion, CatBoost proved to be a strong performer on high-quality, well-structured datasets, 
offering both accuracy and interpretability. However, its effectiveness diminishes under imbalanced or 
noisy conditions, where classification complexity increases. Still, the model's resilience in class-level 
performance metrics highlights its potential as a reliable choice for classification tasks in structured 
clinical data environments. 
 

Table 3: Performance Metrics on Training Data for XGBoostClassifier Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.964052 0.955365 0.967716 0.944830 
TD2 0.794384 0.793492 0.801766 0.794418 
TD3 0.98641 0.951073 0.963355 0.939546 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.659569 0.532136 0.795919 0.659569 

 
Table 4: Performance Metrics on Test Data for XGBoostClassifier Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.987013 0.982213 0.991525 0.973684 
TD2 0.754995 0.753243 0.760660 0.754838 
TD3 0.980132 0.927071 0.945708 0.910206 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.660312 0.532971 0.569677 0.660312 

 
The performance outputs of the XGBoostClassifier algorithm across five different datasets are 
presented in detail in Table 3 for training data and Table 4 for test data. The algorithm demonstrated 
particularly strong performance on TD1 and TD3, achieving high success in both training and testing 
phases. The training accuracies for these datasets were 96.4% and 98.6%, respectively, while test 
accuracies were sustained at 98.7% and 98.0%, respectively. The proximity of F1-score, precision, and 
recall values indicates that the model was able to distinguish between classes in a balanced manner 
and showed no signs of overfitting. A similar trend was observed for TD4, where consistency between 
training and test results further emphasized the model’s strong generalization capacity and high 
tolerance to varying sample distributions. 
 
In contrast, both training and test success rates for TD2 and TD5 were relatively lower. In TD2, training 
accuracy dropped from 79.4% to 75.5% in the test phase, and for TD5, these values remained around 
65.9% and 66.0%, respectively. The decline in F1-score and precision suggests that the model 
encountered difficulty in distinguishing between positive and negative classes in these datasets—likely 
due to class imbalance or limited feature representation. However, it is noteworthy that the gap 
between training and test performances for these two datasets remained minimal. This indicates that 
the model, despite its lower performance, achieved stable learning outcomes and effectively avoided 
overfitting. In conclusion, XGBoostClassifier emerges as a highly effective classifier when data structure 
is adequate, particularly distinguished by its balanced and robust class separation ability on high-
quality datasets. 
 

Table 5: Performance Metrics on Training Data for LightGBM Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.967716 0.963602 0.964413 0.964052 
TD2 0.735364 0.732987 0.744687 0.735413 
TD3 0.990719 0.990682 0.990657 0.990719 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.659457 0.531946 0.693710 0.659457   

 
Table 6: Performance Metrics on Test Data for LightGBM Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.987013 0.986893 0.987233 0.987013 
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TD2 0.723597 0.720710 0.731995 0.723391 
TD3 0.986755 0.986755 0.986755 0.986755 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.660359 0.583437 0.700079 0.666674 

 
The training performance of the LightGBM algorithm is presented in Table 5. On TD1 and TD3, the 
obtained accuracy scores (0.9677 and 0.9907) as well as the corresponding F1-scores (0.9636 and 
0.9907) and other related metrics indicate a highly effective class discrimination capability. The close 
proximity of precision and recall values suggests that the model does not exhibit any bias toward 
particular classes and is able to distinguish between positive and negative classes with consistent 
performance. TD4 also demonstrated similarly strong results, highlighting the model's generalizability 
across varying sample distributions. In contrast, the relatively lower performance on TD2 and TD5 
suggests that limitations related to class structure or sample size may have constrained the model’s 
effectiveness in these datasets. 
 
The results on the test datasets, as reported in Table 6, generally align with the training phase 
performance. For TD1, TD3, and TD4, test accuracies were recorded as 0.9870, 0.9868, and 0.9621, 
respectively, indicating that the learned patterns during training were effectively generalized to unseen 
data. Although test performances for TD2 and TD5 were lower (0.7236 and 0.6603), this drop is 
attributed more to structural complexity of the datasets rather than overfitting. In TD2, the precision 
and recall values were measured as 0.7319 and 0.7234, respectively, demonstrating the model’s 
maintained ability to recognize the positive class to a reasonable degree. Although TD5 showed lower 
F1-score and recall values, the small difference between training and test performance indicates that 
the model did not suffer from overfitting and retained limited yet stable generalizability. Overall, 
LightGBM proves to be a high-performing classifier in datasets with balanced structure and strong 
feature representation, offering both accuracy and class-wise discrimination. 
 

Table 7: Performance Metrics on Train Data for ANN Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.986394 0.977351 0.979597 0.973001 
TD2 0.525612 0.484455 0.515965 0.475965 
TD3 0.986035 0.983140 0.987708 0.971646 

TD4 0.987776 0.983558 0.977719 0.978444 
TD5 0.656624 0.625898 0.640659 0.600043 

 
 

Table 8: Performance Metrics on Test Data for ANN Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.968900 0.964237 0.969184 0.959332 
TD2 0.496600 0.473289 0.486571 0.459876 

TD3 0.961400 0.955826 0.961058 0.951147 
TD4 0.965800 0.961533 0.963472 0.959811 
TD5 0.643500 0.601729 0.627018 0.584220 

 
The performance metrics of the Artificial Neural Network (ANN) model on the training datasets are 
presented in Table 7. The model demonstrated high classification accuracy on TD1, TD3, and TD4, with 
respective accuracy scores of 0.9864, 0.9860, and 0.9878, and consistently strong F1-scores above 0.97. 
These results indicate the model's strong ability to learn and represent the underlying patterns in well-
structured datasets. In TD3, the close alignment of the accuracy (0.9860), F1-score (0.9831), and 
precision (0.9877) highlights the ANN’s capacity to form robust decision boundaries. Similarly, in TD4, 
the narrow gap between precision (0.9777) and recall (0.9784) reflects balanced classification 
performance. In contrast, TD2 and TD5 showed relatively lower performance with accuracy scores of 
0.5256 and 0.6566, respectively—likely due to class imbalance or complex feature distributions. 
However, the improvement in training metrics compared to their corresponding test results suggests 
that the ANN model was able to learn internal patterns effectively, even in challenging data scenarios, 
though with limited generalization in some cases. 
 
The performance metrics of the Artificial Neural Network (ANN) model on the test datasets are 
presented in Table 8. The model achieved high accuracy scores on TD1, TD3, and TD4, recorded as 
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0.9689, 0.9614, and 0.9658, respectively. In these datasets, the values for F1-score, Precision, and 
Recall were closely aligned and evenly distributed, indicating that the model was able to distinguish 
both positive and negative classes with a balanced decision structure. Particularly in TD3, the 
compatibility between the F1-score (0.955826) and the accuracy rate (0.961400) demonstrates that 
the ANN model adapted well to the data structure and was capable of producing generalizable results. 
 
In contrast, notable performance drops were observed for TD2 and TD5. In TD2, the accuracy was 
limited to 0.4966, and the F1-score dropped to 0.473289, reflecting the model's insufficient capability 
to distinguish between classes effectively. A similar trend was seen in TD5, where the F1-score was 
0.601729 and the accuracy 0.6435. These results suggest that the ANN struggled in datasets with more 
complex or imbalanced structures, likely due to class imbalance, limited sample representation, or 
nonlinear feature distributions. Nevertheless, the consistency between Precision and Recall despite the 
low overall performance indicates that the model maintained a certain internal decision stability. In 
summary, while the ANN model demonstrates strong results on high-quality, well-structured datasets, 
its performance can deteriorate under more challenging data conditions. 
 

Table 9: Performance Metrics on Training Data for Stacking Classifier Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.96732 0.966973 0.967551 0.967320 
TD2 0.801166 0.801360   0.803716 0.801179 
TD3 0.990388 0.990321 0.990290 0.990388 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.65941 0.531775   0.455276 0.659410 

 
Table 10: Performance Metrics on Test Data for Stacking Classifier Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.987013 0.986893 0.987233 0.987013 
TD2 0.752141 0.751972 0.752934 0.752096 
TD3 0.984106 0.984106 0.984106 0.984106 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.660359 0.532962 0.456495 0.660359 

 
The stacking-based ensemble learning architecture yielded notably high and balanced results on the 
training data, as shown in Table 9. Particularly in TD1 and TD3, the accuracy scores reached 0.9673 
and 0.9904, respectively, while the corresponding F1-scores were 0.9669 and 0.9903, supporting the 
consistency of performance. The proximity between Precision and Recall values indicates that class 
separation was achieved in a balanced manner. This further demonstrates that the outputs of the base 
classifiers (XGBoost and LightGBM) were effectively integrated by the meta-learner. In the case of TD4, 
both accuracy and F1-scores exceeded 96%, confirming the model’s ability to deliver consistent 
predictions across diverse data structures. However, for TD5, accuracy dropped to 0.6594 and F1-score 
to 0.5317, with Precision declining to as low as 0.45. This suggests that when the base classifiers 
underperform, the meta-model also becomes limited, weakening the overall decision boundary. 
 
The test results, presented in Table 10, reflect a similar trend, showing that the model retained much 
of its training-phase success. Accuracy scores for TD1, TD3, and TD4 were 0.9870, 0.9841, and 0.9621, 
strongly aligning with the training outcomes. This alignment validates that the Stacking model offers 
not only effective learning but also robust generalizability. In TD2 and TD5, test accuracy scores were 
0.7521 and 0.6603, with a moderate performance decline compared to training. Particularly in TD5, 
the F1-score (0.5329) and Precision (0.4565) were relatively low, indicating difficulty in accurately 
identifying minority classes. Nevertheless, the limited gap between training and test scores 
demonstrates that the model avoided overfitting and maintained stable learning performance. In 
conclusion, this stacking-based ensemble framework can effectively capitalize on the synergy of strong 
base classifiers in well-structured datasets but may experience performance degradation under 
imbalanced data conditions due to the limitations inherited from its base learners. 
 

Table 11: Performance Metrics on Training Data for KNN Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.905229 0.904399 0.904146 0.905229 
TD2 0.834841 0.833774 0.837148 0.834841 
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TD3 0.945973 0.935148 0.942471 0.945973 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.714931 0.705936 0.708861 0.714931 

 
Table 12: Performance Metrics on Test Data for KNN Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.909091 0.904082 0.910637 0.909091 
TD2 0.741199 0.738620 0.740677   0.741199 
TD3 0.925828 0.905864 0.905179 0.925828 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.558617 0.544661 0.538689 0.558617   

 
The performance of the K-Nearest Neighbors (KNN) algorithm on the training data is presented in 
Table 11. The results indicate particularly strong performance on TD1, TD3, and TD4. In TD4, the 
accuracy reached 0.9624, with an F1-score of 0.9439, and the balanced Precision and Recall values 
suggest that the model effectively distinguished between positive and negative classes. Similarly, TD3 
achieved an accuracy of 0.9459 and an F1-score of 0.9351, reflecting high class-separation 
performance. The achievement of over 90% accuracy and balanced sub-metrics for TD1 demonstrates 
that KNN can produce effective results in datasets with structurally separable class boundaries. 
However, performance dropped significantly in TD5, where the F1-score decreased to 0.7059 and 
Precision to 0.7088. This decline implies that the model struggles in datasets with high class overlap or 
imbalance. 
 
The test performance results are summarized in Table 12 and largely align with the training outcomes 
for TD1, TD3, and TD4. For instance, the TD4 test accuracy was 0.9621, and the F1-score stood at 
0.9435, highlighting KNN’s strong generalizability in certain data structures. However, the test 
accuracy in TD5 dropped to 0.5586, with an F1-score of 0.5446, indicating that the already modest 
training performance further deteriorated on unseen data. This suggests that KNN is less effective in 
complex or low-representation datasets. Likewise, TD2 showed moderate success in both training and 
test stages, with accuracy values ranging between 74% and 83%, reflecting a low-variance yet 
constrained learning pattern. In conclusion, the KNN algorithm yields satisfactory classification 
performance in datasets with clearly defined class boundaries and sufficient sample density, but it 
shows notable declines in accuracy and class-based metrics when applied to datasets with high class 
overlap or limited feature representation. 

Table 13: Performance Metrics on Training Data for SVM Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.964052 0.963738 0.964058 0.964052 
TD2 0.778677 0.776037   0.788251   0.778677 
TD3 1.000000 1.000000 1.000000 1.000000 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.648109 0.524991 0.746411   0.648109 

 
Table 14: Performance Metrics on Test Data for SVM Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.922078 0.918793 0.922804 0.922078 
TD2 0.73549 0.732474 0.745361   0.735490 
TD3 0.923179 0.886303 0.852259 0.923179 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.638379 0.514416 0.570392   0.638379 

 
The performance of the Support Vector Machine (SVM) algorithm on the training data is summarized 
in Table 13. In TD3, the model achieved 100% accuracy, along with perfect F1 score and other metrics, 
indicating near-perfect adaptation to this dataset. Similarly, TD1 and TD4 also yielded over 96% 
accuracy with consistent F1 scores, suggesting that SVM performs exceptionally well on datasets with 
clearly defined decision boundaries and well-separated classes. Although TD2 yielded a lower accuracy 
of 77%, the balanced Precision and Recall values demonstrate that the model maintained consistent 
decision patterns despite the limited performance. However, in TD5, both the accuracy (0.6481) and 
F1 score (0.5249) were considerably low, revealing the limitations of SVM in datasets characterized by 
overlapping class structures or limited feature representation. 
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Test performance metrics are presented in Table 14. The decline in test accuracy to 92% in TD3, where 
100% training accuracy had been previously achieved, indicates overfitting, suggesting that the model 
over-adapted to the training data. Nevertheless, the F1 score remained relatively high at 0.8863, and 
Precision at 0.8522, implying that the model retained a strong capacity for class separation. For TD1, 
TD2, and TD4, the gap between training and test performance was narrow, highlighting SVM’s robust 
generalization ability for certain data structures. In contrast, TD5 emerged as the weakest dataset for 
this algorithm, with both training and test scores falling behind. Notably, the test F1 score (0.5144) and 
Precision (0.5703) underscored the model’s restricted effectiveness on this dataset. These findings 
suggest that while SVM demonstrates high accuracy and stability in clean, balanced, and linearly 
separable datasets, it may suffer performance degradation in the presence of class overlap, data 
sparsity, or noise, affecting both generalizability and consistency. 
 

Table 15: Performance Metrics on Training Data for Random Forest Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 1.000000 1.000000 1.000000 1.000000 
TD2 0.99643 0.996430 0.996431 0.996430 
TD3 1.000000 1.000000 1.000000 1.000000 
TD4 0.983126 0.980758 0.983417 0.983126 
TD5 0.841732 0.843105 0.844298 0.842560 

 
Table 16: Performance Metrics on Test Data for Random Forest Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.987013 0.986893 0.987233 0.987013 
TD2 0.859657 0.859816 0.860274   0.859648    
TD3 0.966887 0.963473 0.966275 0.966887 
TD4 0.946714 0.938093 0.930242 0.946714 
TD5 0.816932 0.808276     0.783491     0.791845     

 
Table 15 demonstrates that the Random Forest algorithm achieved exceptionally high performance on 
the training datasets. In TD1 and TD3, the model reached 100% accuracy and F1 score, indicating a 
highly capable ensemble of decision trees and near-perfect learning capacity on the training data. 
Similarly, in TD2 and TD4, the model yielded outstanding results with accuracy rates of 0.9964 and 
0.9831, respectively. The close alignment between F1 score, Precision, and Recall values across these 
datasets shows that the model made balanced decisions for both classes and did not exhibit significant 
class misclassification during training. Although TD5 yielded relatively lower performance (Accuracy: 
0.8417, F1: 0.8431), these values still reflect a respectable level of generalizability within the model. 
However, such consistently high training performance may imply an overfitting risk. 
 
Therefore, the test results presented in Table 16 are critical for assessing the model’s generalization 
capacity. On TD1, TD2, and TD3, test accuracy remained high—0.9870, 0.8597, and 0.9668, 
respectively—demonstrating that the model’s learning generalized well to unseen examples. On TD4, 
the test accuracy was 0.9467, with an F1 score of 0.9380, further supporting the model’s balanced 
classification performance. Although TD5 showed the lowest performance, the test accuracy of 0.8169 
still surpassed many of the other algorithms applied to this dataset. The relatively narrow gap between 
training and test metrics across datasets indicates that the Random Forest model maintained strong 
generalization ability despite its high training accuracy. Overall, Random Forest emerges as a powerful 
and balanced ensemble method, capable of effectively separating classes across diverse dataset 
structures while maintaining stability and avoiding severe overfitting. 
 

Table 17: Performance Metrics on Training Data for gst-LR Algorithm Across Datasets 

Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.915033 0.914444 0.914228 0.915033 
TD2 0.653498 0.648548   0.646440 0.653498 
TD3 0.930726 0.906543 0.924290 0.930726 
TD4 0.962404 0.943966 0.926221 0.962404 
TD5 0.582362 0.462013 0.389255 0.582362   

 
Table 18: Performance Metrics on Test Data for gst-LR Algorithm Across Datasets 
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Dataset / Score Accuracy F1 Score Precision Recall 
TD1 0.935065 0.933101 0.935185 0.935065 
TD2 0.660324 0.655809 0.654596 0.660324 
TD3 0.937748 0.918994 0.936859 0.937748 
TD4 0.962108 0.943528 0.925651 0.962108 
TD5 0.582289 0.462322 0.389938 0.582289 

 
The performance of the Logistic Regression model optimized via GridSearchCV (gst-LR) on the training 
datasets is detailed in Table 17. The model achieved accuracy rates of 0.9150, 0.9307, and 0.9624 on 
TD1, TD3, and TD4, respectively, suggesting that the hyperparameter tuning process significantly 
enhanced the model's capacity to fit decision boundaries to the data structure. Particularly in TD4, the 
balance observed among F1 score (0.9439), Precision (0.9262), and Recall (0.9624) indicates the 
model’s strong ability to distinguish between classes. However, lower accuracy and F1 scores in TD2 
and especially TD5 (e.g., Accuracy: 0.5823, F1: 0.4620) highlight performance limitations. In TD5, the 
Precision score dropped to 0.389, signaling a susceptibility to false positive predictions and suggesting 
that the model may be less reliable under class-imbalanced conditions. 
 
The test performance metrics are summarized in Table 18. The model maintained strong performance 
on TD1, TD3, and TD4 during testing as well—for instance, TD4 yielded an accuracy of 0.9621 and F1 
score of 0.9435, demonstrating high training–test consistency. Similarly, TD3 achieved a test accuracy 
of 0.9377, with a balanced F1 score (0.9189) and coherent Precision/Recall values, supporting the 
model's generalizability. In contrast, poor performance persisted on TD2 and TD5 during testing, 
reflecting the model’s vulnerability to structural complexities or class imbalance. Particularly 
concerning is the Precision value of 0.3899 on TD5, which suggests a heightened risk of false 
positives—an important factor to consider in critical applications. Overall, while the gst-LR model 
benefits from hyperparameter tuning by enhancing linear separability and yielding strong results in 
structured datasets, its performance remains limited in complex or imbalanced data scenarios. 
 

Table 19: Test Accuracy Comparison of All Algorithms Across Datasets 

Dataset CatBoost XGBoost LightGBM ANN Stacking KNN SVM 
Random 
Forest 

gst-LR 

TD1 0.987013 0.987013 0.987013 0.968900 0.987013 0.909091 0.922078 0.987013 0.935065 
TD2 0.723597 0.754995 0.723597 0.496600 0.752141 0.741199 0.735490 0.859657 0.660324 

TD3 0.986755 0.980132 0.986755 0.961400 0.984106 0.925828 0.923179 0.966887 0.937748 
TD4 0.962108 0.962108 0.962108 0.965800 0.962108 0.962108 0.962108 0.946714 0.962108 
TD5 0.660359 0.660312 0.660359 0.643500 0.660359 0.558617 0.638379 0.816932 0.582289 

 
In this study, five distinct datasets were employed to evaluate the classification performance of nine 
different algorithms, with their accuracy scores systematically compared. Table 19 presents the 
accuracy values obtained by CatBoost, XGBoost, LightGBM, Artificial Neural Network (ANN), Stacking, 
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Random Forest, and Logistic Regression 
optimized via GridSearchCV (gst-LR) across each dataset. This comparative structure highlights how 
different model architectures respond to various data characteristics in a systematic manner. 
 
Overall, Random Forest emerged as the most consistent performer, achieving high accuracy across all 
datasets. Its ability to deliver robust results even in datasets with low separability and class imbalance 
demonstrates the model’s strong generalizability. Similarly, ensemble learning approaches such as 
CatBoost, XGBoost, LightGBM, and Stacking achieved consistently high performance, especially on 
datasets with well-defined class structures. 
 
The ANN model, while effective on certain datasets, exhibited noticeable performance degradation in 
datasets with imbalanced class distributions. This suggests the model’s sensitivity to data structure 
and indicates limited parameter stability in small-sample or imbalanced scenarios. Likewise, KNN and 
SVM showed competitive performance on well-separated and clean datasets but struggled to maintain 
consistency in more complex structures. 
 
The gst-LR model, though it delivered satisfactory results on some datasets, showed limited 
performance in structurally complex datasets due to its reliance on linear decision boundaries. This 
underscores the challenges linear classifiers face when applied to data requiring non-linear decision 
surfaces. 
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The applied methodological framework demonstrates that model performance cannot be explained 
solely by algorithm selection or hyperparameter tuning. Instead, it arises from the holistic interaction 
of multiple factors, including data structure, validation strategy, and metric diversity. The evaluation 
system established in this study emphasized cross-validation schemes, sample diversity, and 
sensitivity to class balance, enabling performance assessment to be distributed across the entire 
modeling process. As a result, the model outcomes were derived not from random or isolated 
partitions, but from reproducible, context-sensitive, and systematically generated observations. 
 
 

   
Figure 8: TD1 Accuracy Comparasion Charts 

 
As illustrated in Figure 8 Left and Right, CatBoost, XGBoost, LightGBM, Random Forest, and Stacking 
algorithms achieved similarly high levels of accuracy on this dataset. The ANN model closely followed 
this group in performance, while KNN and SVM algorithms demonstrated comparatively lower results. 
This outcome indicates that the dataset possesses clearly separable class structures and is well-suited 
for model learning. 
 
 

  
Figure 9: TD2 Accuracy Comparasion Charts 

 
As shown in Figure 9 Left and Right, TD2 yielded more divergent results across the applied algorithms. 
Random Forest achieved the highest accuracy on this dataset, whereas the ANN model demonstrated 
significantly lower performance. This distribution suggests that factors such as class imbalance or 
complex inter-class relationships may have constrained the learning capacity of certain algorithms. 
 
 

   
Figure 10 : TD3 Accuracy Comparasion Charts 

 
According to Figure 10 Left and Right, this dataset presents a structure in which boosting-based 
algorithms exhibit strong performance. CatBoost, LightGBM, and Stacking models achieved high 
accuracy scores, while ANN and Random Forest also produced results close to this group. The overall 
high model performance indicates that the dataset is well-structured and statistically balanced. 
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Figure 11 : TD4 Accuracy Comparasion Charts 

 
According to Figure 11 Left and Right, all algorithms achieved relatively similar and high accuracy 
scores on the TD4 dataset. This indicates that the samples in the dataset are homogeneously 
distributed, the differences between classes are distinct, and nearly all models were able to achieve 
comparable classification performance. 
 

    
Figure 12 : TD5 Accuracy Comparasion Charts 

 
As shown in Figures 12 Left and Right, this dataset has revealed more pronounced differences in 
performance across models. Random Forest clearly achieved the highest accuracy score, while other 
algorithms were limited to lower values. This suggests that the dataset contains more complex class 
relationships and that some models failed to adequately adapt to this structure. 
 
This comprehensive experimental study has revealed the comparative performance of various 
classification algorithms applied to datasets with different structural characteristics and class 
distributions. The findings are grounded not only in overall model accuracy but also in 
multidimensional evaluation criteria such as statistical reliability, generalizability, and contextual 
compatibility. 
 
Boosting-based models—particularly CatBoost, XGBoost, and LightGBM—consistently demonstrated 
high and stable performance across multiple datasets. Random Forest also stood out due to its strong 
accuracy and robustness against structurally challenging datasets. In contrast, deep learning-based 
models such as Artificial Neural Networks (ANNs) showed competitive performance in certain datasets 
but proved to be more fragile in the face of imbalanced class structures and limited sample sizes. 
Classical algorithms like KNN and SVM, on the other hand, exhibited performance that varied greatly 
depending on the geometric separability of the data. 
 
These findings collectively emphasize that no single model serves as the optimal solution for all 
problems; rather, model selection must be tailored to the specific structure of the dataset, the problem 
context, and class distribution. The analyses and visualizations presented offer a systematic evaluation 
framework that enables not only performance comparison but also a deeper understanding of model 
behavior—especially for practitioners. 
 
In conclusion, this study has gone beyond a purely experimental comparison of different model 
structures. It has proposed a multi-layered classification evaluation system that is responsive to data 
characteristics, enriched by metric diversity, and grounded in methodological rigor. The systematic 
approach adopted here offers a generalizable methodological foundation not only for the current 
problem domain but also for similar classification tasks, prioritizing decision explainability, result 
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reproducibility, and overall analytical reliability. 
 

4. Conclusion (Sonuç) 
 
This study presented a comprehensive classification framework designed to evaluate the performance 
of various machine learning algorithms across multiple datasets with differing statistical properties 
and class distributions. A systematic comparison was carried out involving boosting-based models 
(CatBoost, XGBoost, LightGBM), ensemble methods (Random Forest, Stacking), traditional classifiers 
(KNN, SVM, Logistic Regression), and artificial neural networks (ANN). The models were assessed 
using a multidimensional evaluation scheme, incorporating accuracy, F1-score, precision, recall, and 
specificity metrics. 
 
The results demonstrated that the Random Forest algorithm consistently achieved high classification 
accuracy and class separation performance across all datasets, highlighting its strong generalization 
ability. Likewise, CatBoost, XGBoost, and LightGBM achieved high and stable accuracy levels, 
particularly in well-structured datasets such as TD1, TD3, and TD4, where they delivered performance 
levels above 96–99%. These models also maintained relatively stable results in more complex datasets 
like TD2 and TD5, reinforcing their robustness and resilience to imbalanced or noisy data. 
 
In contrast, the performance of the ANN model showed considerable fluctuations based on the dataset 
characteristics. While ANN achieved competitive results on datasets with balanced and well-defined 
class boundaries, it suffered noticeable accuracy drops imbalanced or structurally complex datasets 
such as TD2 and TD5. Similarly, traditional models like KNN and SVM performed well only when the 
data exhibited clear separable decision boundaries in the feature space. 
 
The use of Stratified K-Fold cross-validation played a critical role in enhancing the statistical reliability 
of model assessments, reducing variance, and preserving class distributions within each fold. 
Particularly in datasets with underrepresented classes, the combination of sensitivity-oriented metrics 
such as F1-score and recall allowed for a more nuanced evaluation of classifier effectiveness. 
Additionally, hyperparameter tuning via GridSearchCV and Optuna helped improve model capacity 
while mitigating overfitting. 
 
Compared to prior studies in the literature, the present research yields superior predictive 
performance and methodological robustness. Bharath and Sabitha[29]  reported an accuracy of 
98.05%, precision of 97.83%, and recall of 95.74% using XGBoost on a single clinical dataset. In 
contrast, the CatBoost model developed in this study achieved test accuracy rates of 98.7% (TD1), 
98.9% (TD3), and 96.2% (TD4), with corresponding F1-scores of 0.9869, 0.9892, and 0.9435 
respectively, while maintaining high recall (≥ 96%) across datasets with varying complexity and class 
balance. Similarly, the stacking ensemble proposed here reached 98.7% accuracy on TD1 and 98.4% 
on TD3, outperforming the meta-classifier by Hegde et al. [25], which achieved 98.0% accuracy and 
97.0% recall under synthetic feature selection. Additionally, this study achieved a recall of 0.99 and F1-
score above 0.98 on TD3, surpassing the 91.9% F1-score reported by Arslan and Çolak[23] using 
explainable boosting machines. Beyond raw performance, this study’s integration of stratified k-fold 
cross-validation, SMOTE-based balancing, and multi-dataset validation distinguishes it from previous 
efforts relying on static train-test splits. These results not only confirm the high classification potential 
of gradient boosting and ensemble models but also demonstrate the critical role of cross-context 
validation and preprocessing standardization in producing clinically reliable AI-based diagnostic 
systems. 
 
The visual analyses and comparative plots provided further insight into model behavior across 
datasets, not only in terms of predictive accuracy but also in variance and consistency. For datasets 
such as TD1, TD3, and TD4, nearly all models exhibited strong performance, whereas TD2 and TD5 
highlighted the superiority of ensemble models over more fragile approaches like ANN, SVM, and KNN 
under complex conditions. These discrepancies underline the importance of aligning model selection 
with the structural characteristics of the dataset. 
 
In conclusion, this study not only offers a comparative evaluation of machine learning algorithms but 
also proposes a scalable, explainable, and statistically sound methodology for medical classification 
tasks. The approach adopted in this work can be easily adapted to similar classification problems and 
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provides a practical decision-support foundation for real-world artificial intelligence deployments in 
clinical applications. 
 

Future Works (Gelecek Çalışmalar) 
 
In light of the findings of this study, future research may focus on a more detailed investigation of model 
explainability, time-cost efficiency, and the performance of classification algorithms on diverse data 
structures or multi-label classification problems. Particularly, the integration of explainable artificial 
intelligence (XAI) techniques like SHAP and LIME could significantly enhance transparency in model 
decisions, fostering greater user trust and improving the reliability of supervised clinical decision 
support systems. Additionally, exploring the impact of different preprocessing strategies, synthetic 
data generation techniques, and hybrid modeling architectures may contribute to improving the 
adaptability of the system to broader application domains. Real-time deployment scenarios and sector-
specific experiments would further strengthen the practical validity and applicability of the proposed 
framework. 
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