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ABSTRACT  
 
In this study, a new Stereotactic Brain Biopsy System is introduced that enables the biopsy 
procedure to be conducted in a single session, in contrast to traditional methods requiring two 
separate sessions. The proposed system comprises two fully automated stages: imaging and 
planning. The imaging stage involves acquiring MRI and MRA data, while the planning stage 
automatically calculates the trajectory with the lowest risk score (Entry-Target axis). The target 
point is determined as the tumor's center, and candidate entry points are defined within a circle 
centered on the nearest entry point to the target. The system introduces a unique trajectory risk 
score calculation methodology, considering both geometric and structural risk factors. Geometric 
risk is assessed based on trajectory length, skull bone thickness, and alignment with the tumor's 
primary axis, whereas structural risk concerns the trajectory's proximity to independent brain 
structures. Consequently, automatic segmentation of these brain structures (e.g., vascular tree, 
ventricles, and functional areas) is necessary. Several features differentiate the proposed biopsy 
system from existing ones: incorporation of skull thickness information in trajectory detection, 
provision of objective software output for subjective evaluations during planning, implementation 
of an innovative risk score approach, adoption of cutting-edge artificial intelligence architectures, 
elimination of steps typical in classical biopsy (such as MRI-CT registration, visible anatomical 
structure detection, and verification), and the capacity to perform the biopsy in a single session.  
The system is intended to be integrated as an extension into the 3D Slicer software and shared with 
the scientific community in the future. 

Stereotaktik Beyin Biyopsisinde Yapay Zekâ Destekli 
Optimum Rota Seçimi 
 
ÖZ 
 
Bu çalışmada, geleneksel yöntemlerin iki ayrı seansta gerçekleştirilmesini gerektirdiği beyin 
biyopsi işlemini tek bir seansta yapmaya olanak tanıyan yeni bir Stereotaktik Beyin Biyopsi Sistemi 
tanıtılmaktadır. Önerilen sistem, tamamen otomatik iki aşamadan oluşmaktadır: görüntüleme ve 
planlama. Görüntüleme aşamasında, manyetik rezonans görüntüleme (MRI) ve manyetik rezonans 
anjiyografi (MRA) verileri elde edilmektedir. Planlama aşamasında ise, en düşük risk skoruna sahip 
biyopsi rotası (Giriş-Hedef ekseni) otomatik olarak hesaplanmaktadır. Hedef nokta tümörün 
merkezi olarak belirlenirken, aday giriş noktaları hedefe en yakın yüzey noktasını merkez alacak 
şekilde tanımlanan bir daire içinde seçilmektedir. Sistem hem geometrik hem de yapısal risk 
faktörlerini dikkate alan özgün bir biyopsi rotası risk skoru hesaplama yöntemi sunmaktadır. 
Geometrik risk; rota uzunluğu, kafatası kemik kalınlığı ve rotanın tümörün ana ekseni ile 
hizalanması gibi ölçütlere dayanmaktadır. Yapısal risk ise, rotanın bağımsız beyin yapılarıyla 
(örneğin damar ağı, ventriküller ve fonksiyonel alanlar) olan yakınlığına göre 
değerlendirilmektedir. Bu nedenle, bu beyin yapılarına ait otomatik segmentasyonun 
gerçekleştirilmesi gerekmektedir. Önerilen biyopsi sistemini mevcut sistemlerden ayıran çeşitli 
özellikler bulunmaktadır: rota belirleme sürecine kafatası kalınlığı bilgisinin dâhil edilmesi, 
planlama sürecindeki öznel değerlendirmelere nesnel yazılım çıktıları sağlanması, yenilikçi bir risk 
skoru hesaplama yaklaşımının uygulanması, ileri düzey yapay zekâ mimarilerinin benimsenmesi, 
klasik biyopsi yöntemlerinde yer alan MRI-CT kaydı, anatomik yapıların görünürlük temelli tespiti 
ve doğrulama gibi adımların ortadan kaldırılması ve işlemin tek bir seansta gerçekleştirilebilmesi. 
Sistem, gelecekte 3D Slicer yazılımına bir eklenti olarak entegre edilmesi ve bilimsel toplulukla 
paylaşılması hedeflenmektedir. 
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1. Introduction (Giriş)  
 
Artificial intelligence (AI) has rapidly become an essential component across a wide range of industries, 
including manufacturing [1], energy [2], textile [3], security [4], communication [5], and transportation 
[6], [7], through its applications in big data analytics [8], large language models (LLMs) [9], [10], and 
intelligent data processing systems. Among these diverse applications, the healthcare sector stands out 
as one of the most significantly transformed by AI-driven innovations [11], [12]. The integration of AI 
into medical workflows has enabled more accurate diagnostics, individualized treatment planning, and 
improved efficiency in managing complex clinical procedures [13], [14], [15]. Particularly in medical 
imaging and image-guided interventions, AI technologies offer powerful tools that support clinicians 
with data-driven insights and high-precision decision-making. In neurosurgery—where even the 
smallest deviation can have critical consequences—these advances are redefining traditional practices 
[11], [16]. A notable application within this context is the diagnosis and treatment planning of brain 
tumors, where obtaining histopathological data through minimally invasive and safe techniques is vital 
[17] . 
 
Advances in neuroimaging and neurosurgical technologies have significantly enhanced the diagnosis 
and management of intracranial pathologies [18], [19]. Among these, brain tumors remain one of the 
most complex and critical conditions due to their heterogeneous nature, varied locations, and potential 
impact on vital cognitive and motor functions [17], [20]. Early and accurate identification of tumor 
characteristics plays a pivotal role in improving treatment outcomes and minimizing neurological 
deficits [20]. In this context, obtaining reliable histopathological information is essential for 
differentiating tumor types and formulating targeted therapeutic strategies. 
 
Determining the type of brain tumor is crucial for planning the appropriate treatment stages, such as 
radiation or chemical therapy. Therefore, it is necessary to obtain a sample of the tumor and examine 
it pathologically. This procedure, known as biopsy, is typically performed through classical surgery. 
However, classical surgery poses a significant risk when removing a portion of a tumor located in 
critical areas of sensitive organs such as the brain. In contrast, Stereotactic Biopsy is preferred due to 
its low risk of complications and the fact that it does not require general anesthesia or craniotomy [21].  
 
There are numerous ongoing studies in the field of stereotactic brain biopsy. For example, Jung et al. 
[22], conducted a study in which the post-biopsy complications of 42 patients who underwent 
stereotactic brain surgery between 2015-2020 were examined to determine the reliability of the 
biopsy. Similarly, Jaradat et al. [23], investigated the reliability of brain stem biopsy in their study. 
Cheng et al. [24] studied the complications of biopsies performed in different regions of the brain, such 
as the sellar, pineal, and brainstem, rather than in a single region.  Haj-Hosseini et al. [25] proposed a 
fiber optic probe to guide stereotactic brain tumor biopsy, and it has been found that the tumorous 
structure is imaged with high accuracy, particularly when the beam is sent on the foundation axis. 
Ogiwara et al. [26], presented a new biopsy method capable of removing a larger section of a brain 
tumor using an excision material. However, all these studies are focused on determining or enhancing 
the reliability of manual stereotactic brain biopsy. 
 
Zanello et al. [27], conducted a systematic review of 42 studies out of 1,543 scientific studies on 
automated stereotactic planning. These studies covered various applications, including brain biopsy (3 
studies), deep brain stimulation (14 studies), trajectory planning for StereoElectroEncephaloGraphy 
(SEEG) (22 studies), thermal therapy for epilepsy (2 studies), and external ventricular drainage 
placement (1 study). SEEG involves identifying brain regions with abnormal function and then placing 
electrodes in these areas through planning. DepthMap and AlternativeFinder are two software tools 
commonly used in this field [28]. DepthMap uses projective geometry to transfer 3D data to 2D space 
and estimates depth in the 2D image, thereby providing measurement and visualization capabilities 
along the trajectory. AlternativeFinder is used for comparing different trajectories. These software 
tools aid in suitable trajectory planning for epilepsy patients. Zanello highlighted EpiNav, a clinical 
decision support software developed by the UCL (UK research group), as the standout among others. 
EpiNav [19] is a 3D neuronavigation software that assists in locating the brain regions causing epilepsy 
seizures and placing catheters in the relevant area. It is a tool that can identify abnormal brain areas by 
detecting the vascular structure and white matter (WM) pathways that connect different areas of the 
brain. 
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Zanello also emphasized the need for automated stereotactic planning studies to include a brain tumor 
biopsy module, stating that this is an open working area in the field and that such studies will be needed 
in the future. Zanello noted that none of the reviewed studies provided information on the future use 
of the software produced, and that currently, there is no open-source software available for general 
use, as the software produced is used locally by working groups [27]. 
 
Trope et al. [18] conducted a study to examine the differences between automatic and manual 
trajectory planning using multimodality data obtained from eight patients (six male and two female) 
with a clear tumor structure. Four scans, including T1, FLAIR, DTI, and fMRI, were obtained from the 
patients, and they were overlaid on T1. The target point was manually marked on T1, and the outer 
surface of the skull, ventricles, and blood vessels (>1mm) were segmented. The manually segmented 
skull was converted into a mesh, and the ventricles were segmented using the region-growing 
technique of ITKSnap software. The blood vessels were segmented using a watershed and graph cut-
based approach, and the segmentation results were manually corrected by a surgeon. The surfaces of 
the face, ears, hemisphere, cerebellum, and brainstem were removed, and the remaining surface points 
in the regions were used as candidate entry points. The DTI and fMRI modalities were utilized to 
identify the visual, auditory, and motor areas. During the planning phase, three different methods were 
compared: manual, visual, and automatic. In the manual method, the entry point was manually 
determined. In the visual method, the segmentation results were overlaid in color, and the surgeon 
determined the entry point using the colored model. In the automatic approach, the skull mesh was 
reduced to 1000 points, and a risk score was calculated for each point along the trajectory. A different 
surgeon selected the optimal entry point from the results of the three methods. 
 
Marcus et al. [29] has developed computer-assisted software called SurgiNav for stereotactic brain 
biopsy. Using the SurgiNav software, a brain surgeon can examine trajectories that allow for the 
shortest path to reach the tumor by making a perpendicular entry into the skull surface. The surgeon 
can also assess the potential for encountering vascular structures along these trajectories. SurgiNav 
automatically calculates the entry and target points, but the brain segmentation algorithm [30] must 
complete its work before determining these points. The segmentation process takes approximately an 
hour for a 3D MRI dataset, which is slow and makes SurgiNav unsuitable for clinical use. 

 
Hu et al. [31] conducted a study comparing frame-based stereotactic biopsy with robot-assisted biopsy 
using MRI and MRA data as input. The study analyzed 151 patient biopsies, with 47 frame-based and 
107 robot-based procedures. In the planning phase of the study, SinoPlan software was used, which 
can automatically extract 3D vascular structures and generate information on whether the planned 
trajectory will intersect a vessel or not. However, the entry and target points in SinoPlan are manually 
entered by the surgeon. The quality of the biopsy was evaluated using metrics such as Target Error 
Point (TPE) and Entry Error Point (EPE). For example, TPE measures the pixel difference between the 
center of the manually identified tumor and the center of the largest possible circle that can fit inside 
the tumor structure. 
 
In response to the clinical demand for more reliable, efficient, and patient-friendly stereotactic brain 
biopsy procedures, we propose a novel system capable of performing the entire biopsy process within 
a single session. Unlike conventional approaches that typically require two separate stages—each 
involving imaging, planning, and surgical intervention—our system integrates fully automated imaging 
and planning modules, thereby minimizing procedural complexity and potential risks. A central 
innovation of our method is a trajectory risk score calculation framework that evaluates both geometric 
factors (trajectory length, skull thickness, alignment with the tumor axis) and structural risks 
(proximity to critical brain structures such as vessels, ventricles, and functional areas). This dual-
dimensional risk modeling enhances both safety and surgical accuracy. 
 
Moreover, the proposed system introduces several distinctive contributions to the field: (1) it utilizes 
skull thickness as a decision-support parameter during trajectory selection, which is typically 
overlooked in existing systems; (2) it offers objective, software-generated evaluations to support what 
are often subjective planning decisions; (3) it leverages advanced artificial intelligence architectures to 
improve automation and precision; and (4) it eliminates classical but redundant steps such as MRI-CT 
registration and manual identification of anatomical landmarks. These improvements collectively aim 
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to streamline the biopsy workflow, reduce dependency on operator expertise, and improve 
reproducibility. To facilitate adoption by the broader research and clinical communities, the system is 
designed to be integrated as a plugin into the open-source 3D Slicer platform. 

 
The following sections of this manuscript provide details on the materials and methods used in this 
study, which are explained in Section 2. Specifically, we describe the classical and proposed stereotactic 
biopsy systems in detail, including their imaging and planning stages. The experimental results of our 
study are presented in Section 3, where we compare the performance of the classical and proposed 
systems based on various metrics. Finally, in Section 4, we conclude our study and discuss the potential 
implications of our proposed system for the field of stereotactic brain biopsy. 
 

2. Material and Methods (Materyal ve Yöntem) 
 
2.1. Stereotactic Biopsy (Stereotaktik Biyopsi)  
 
Stereotactic biopsy is performed in two sessions. It is given in Figure 1. The first session involves 
imaging and planning stages, while the second session includes imaging, overlapping, verification, and 
surgical intervention stages. 

Figure 1. The diagram of Two-session Stereotactic Biopsy: Session one includes imaging and planning; session 
two involves imaging, registration, verification, and surgery.  

(İki seanslı Stereotaktik Biyopsi şeması: Birinci seansta görüntüleme ve planlama; ikinci seansta ise görüntüleme, eşleştirme , 
doğrulama ve cerrahi yer almaktadır.) 

 

2.1.1. Imaging (Görüntüleme)  
 
In this stage, a metal frame is affixed to the patient's head, and an MRI scan is conducted. However, it 
is possible for the screws used to attach the metal frame to be tightened excessively, resulting in 
indentations or fractures in the patient's skull bone. As a result, the traditional method of affixing the 
metal frame can negatively impact patient comfort by requiring the attachment process to be repeated. 
 
2.1.2. Planning (Planlama)  
 
At this stage, all the necessary markings for a stereotactic biopsy are made. This involves determining 
the entry point from the skull to the center of the tumor (target point) while taking into consideration 
the tumor location, visible structures such as AC, PC, and MC, brain vessels, and functional regions. Once 
the optimal entry point is identified, markers are placed in the relevant positions. This stage is time-
consuming and typically takes an average of 221 ± 39 minutes (approximately 4 hours), which is why 
the conventional biopsy approach requires a two-session approach [27]. 
 
Identification of Anatomical Structures: White oval-shaped fibers, measuring approximately 5 mm in 
length and oriented vertically, connect the two hemispheres of the brain. The center point of these 
fibers is known as the AC. The PC is a circular band of white fibers located at the tip of the cerebral 
aqueduct. The MC is a flattened tissue band that connects both parts of the thalamus. It is roughly 10 
mm in diameter and is situated around the middle part of the AC-PC line. The brain surgeon carefully 
examines the images in three axes (axial, coronal, and sagittal) to identify these structures and typically 
uses the sagittal axis to place the markers. This process of marking anatomical structures is performed 
in both sessions, and MRA-CT fusion is conducted using these markers. 
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Determining the Target Point: The target point is located at the center of the tumor mass, which can be 
detected by analyzing MRI images. Typically, the tumor mass is manually segmented using sagittal axis 
images, where different colored brushes are used to roughly paint the tumor and non-tumor areas. A 
circular brush is commonly used, and its size is adjusted according to the size of the tumor. The painted 
pixels are considered as seeds and provided as input to the "seed expansion" algorithm, which models 
the pixel values of seeds with the same color value by calculating their mean and covariance matrix. 
Then, neighboring pixels of seeds are classified based on their similarity to the model (expansion). The 
model information is updated after each classification, and this process continues until all pixels are 
classified. However, the expansion algorithm may sometimes lead to misclassification of pixels, which 
can be corrected by manual interventions using the brush object, resulting in the most accurate 
segmentation. In the next step, 2D tumor segments from different images are merged to obtain a 3D 
tumor model, and the center point (target point) of the 3D tumor structure can be easily calculated. An 
example MRI image demonstrating this process is shown in Figure 2. 

Figure 2. Determination of the target point based on tumor center for trajectory planning. 

(Rota planlaması için tümör merkezine dayalı hedef noktanın belirlenmesi) 
 
Determining Entry Point: This is the most difficult and time-consuming task during the planning phase, 
as it involves determining the most direct and safest path to reach the target point. To accomplish this, 
typically 4-5 potential entry points are marked on the 3D skull model, as shown in Figure 3. 

Figure 3. Determining candidate entry points around the target for trajectory planning. 

(Rota planlaması için hedef çevresindeki aday giriş noktalarının belirlenmesi) 
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The following steps are performed sequentially for each candidate entry point. 
• Measuring the Trajectory Length. 
• Checking for Intersection with Vessels on the Trajectory. 
• Selection of Entry Point. 

 
Measuring the Trajectory Length: To measure the length of the trajectory, a 2D cutting plane is first 
obtained by passing through the candidate and target points, as shown in Figure 4. 

Figure 4. Measuring the length of the candidate biopsy trajectory. 

(Aday biyopsi rotasının uzunluğunun ölçülmesi) 

Once the cutting plane is determined, the 3D skull model is divided into two parts, and either one can 
be used for measurement. A meter tool is then selected, and the length of the trajectory is measured by 
selecting the candidate and target points in sequence, as shown in Figure 5. 

Figure 5. Determining the cutting plane and measuring its length using a meter tool. 

(Kesme düzleminin belirlenmesi ve uzunluğunun metre aracıyla ölçülmesi) 
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 Checking for Intersection with Vessels on the Trajectory: At this stage, it is necessary to verify whether 
the axis of rotation intersects with the vascular structure, which is done by evaluating the axial, coronal, 
and sagittal views together. This process is difficult, time-consuming, and carries a high risk of error, 
as all three images along the axis need to be evaluated simultaneously, as shown in Figure 6. 
Additionally, in MRI-T1 scans, the vascular structure is not clearly separated from other structures, 
making it challenging even for experienced surgeons to determine whether the axis of rotation 
intersects with the vascular structure. 
 

 

Figure 6. Evaluation of the candidate trajectory’s overlap with the vascular structure. 

(Aday rotanın damar yapısıyla örtüşüp örtüşmediğinin değerlendirilmesi.) 

 
Selection of Entry Point: The two processes described above are repeated for each candidate entry 
point. The results obtained are then evaluated collectively, and the entry point that does not intersect 
with the vascular structure among the candidate entry points and has the shortest path length is 
selected as the entry point. 
 
2.1.3. Registration (Eşleştirme)  
In the second session, the metal frame is reattached to the patient's head, and a CT scan is conducted. 
The MRI data obtained in the first session and the CT data obtained in the second session are then 
aligned using visible anatomical landmarks, as shown in Figure 7. 
 

 

Figure 7. The MRI-CT registration process involves aligning (blue) MRI and (orange) CT images. 

(MRI-CT eşleştirme süreci, (mavi) MRI ve (turuncu) BT görüntülerinin hizalanmasını içerir) 

The registration process involves marking anatomical landmarks on the MRI and CT images and 
performing a transformation between them. To minimize errors and expedite the process, the surgeon 
performs a rough manual alignment before running the registration algorithm. 2D MRI and CT image 
overlay tools are employed to verify the accuracy of the registration. If successful, the entry and target 



8 

 

 

E-ISSN: 2651-5350 © 2025 Parantez T  

Şahin & Talu 

point coordinates marked on the MRI are transferred to the CT. In case of registration failure, the 
process is repeated until satisfactory alignment is achieved. 
 
2.1.4. Verification (Doğrulama)  
 
At this stage, the alignment of the biopsy needle to the same point in 3D space before and after 
registration is verified using a validation tool attached to the patient's head with the metal frame, as 
shown in Figure 8-left. The angle and distance values on the metal frame are calculated based on the 
marker information on the MRI image, enabling the determination of the point in 3D physical space 
corresponding to the tip of the biopsy needle (target point). The position of this point is maintained 
using the validation tool. Then, the angle and distance values on the metal frame are recalculated based 
on the CT data, and it is checked whether the tip of the biopsy needle aligns with the same target point. 
Successful alignment of the validation tool with the biopsy needle tip indicates a successful registration, 
and the process proceeds to the next stage. If the alignment is unsuccessful, the registration process is 
repeated until satisfactory alignment is achieved. 

Figure 8. Verification and surgical intervention stages of the stereotactic biopsy procedure [32]. 

(Stereotaktik biyopsi sürecinde doğrulama ve cerrahi müdahale aşamaları) 

2.1.5. Surgical Intervention (Cerrahi Müdahale)  
 
At this stage of the procedure, a small incision of 2-3 cm is made on the skull, which is centered around 
the entry point, as shown in Figure 8-right. It is imperative that the incision is made at an area of the 
skull where the bone is relatively thin. This allows for ease of cutting by the surgeon and quick healing 
for the patient. Following the incision, the biopsy needle is carefully inserted from the entry point 
towards the target point, and a small piece of the tumor is removed for analysis. The needle is then 
removed, and any necessary stitches are made to close the incision. The patient is then awakened and 
transferred to the ward for observation. Typically, patients are discharged the day after the procedure 
and are informed about the results of the biopsy approximately one week later. It is important to note 
that this procedure carries some risks, such as infection or bleeding, which will be closely monitored 
by the healthcare team. Nonetheless, with proper care and attention, patients can expect a successful 
outcome from this procedure. 
 
2.2. Proposed Biopsy System (Önerilen Biyopsi Sistemi)  
 
This study introduces a novel automatic stereotactic biopsy system, as shown in Figure 9. This system 
consists of three main stages: imaging, planning (automatic), and surgical intervention. During the 
planning stage, the software automatically detects the lowest risk entry-target trajectory, eliminating 
the need for manual trajectory planning. The system aims to perform the biopsy in a single session, in 
contrast to the traditional biopsy procedure that requires two sessions. The new system is designed to 
eliminate dependence on the surgeon and improve patient comfort. Unlike the classical biopsy, the 
proposed system does not require MRI-CT registration, identification of visible anatomical structures, 
or verification stages. This results in a faster, more comfortable, and more reliable biopsy for both the 
patient and the surgeon. In general, the proposed system offers a contemporary biopsy solution that 
can rival costly systems lacking state-of-the-art artificial intelligence software. It has the potential to 
revolutionize the biopsy process by providing an automatic and efficient alternative to the traditional 
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manual approach. While further research and testing are necessary to fully evaluate the efficacy of the 
new system, the preliminary results are encouraging. 
 

Figure 9. Diagram of the Proposed Automatic Modular Brain Biopsy System, illustrating key modules developed 
to improve safety, speed, and precision in the biopsy process. 

(Önerilen Otomatik Modüler Beyin Biyopsi Sisteminin şeması; biyopsi sürecinde güvenlik, hız ve hassasiyeti artırmak üzere 
geliştirilen temel modülleri göstermektedir.) 

 
2.2.1. Imaging (Görüntüleme)  
 
During this stage, the patient will undergo MRI-T1 and MRA-T2 imaging. The MRA-T2 data will be 
utilized for segmentation of the vascular network, while the MRI-T1 data will be used for segmentation 
of other brain structures and calculation of skull thickness. The use of a special frame apparatus is not 
required during the imaging phase. Instead, a simple 3-pin skull clamp, as shown in Figure 9, can be 
utilized. This clamp is fixed to the operating table and, if a reference point is established for a robotic 
system, the proposed system can be utilized in conjunction with a frameless stereotactic biopsy system. 
 
2.2.2. Planning (Planlama)  
 
During the planning phase, automatic processes are performed for tumor, ventricle, cerebrovascular 
tree, skull thickness, entry point detection, and registration. This stage takes approximately 10 minutes. 
 
Detection of Tumor Area: Swin UNETR [33], [34]  has been trained on the BraTS 2021 [35] dataset, 
where it has demonstrated state-of-the-art performance. The BraTS 2021 dataset comprises 1470 3D 
volumes (1251 for training and 219 for validation) for brain tumor segmentation and is known to 
contain a sufficient level of color, texture, and shape variations in tumor structures. Swin UNETR 
leverages shifted windows for self-attention computation in the Swin transformer encoder to extract 
features at different resolutions [33], [34]. These features are then integrated with each resolution's 
FCNN-based decoder through skip connections, resulting in accurate brain tumor segmentation.  
 
In this study, we utilized a pre-trained [36] version of the Swin UNETR model that has been trained on 
the BraTS 2021 dataset and demonstrated high performance. After detecting the tumor structure, we 
calculated the center point (target point) and basic axis information of the model, with the basic axis 
information serving as a parameter in determining the entry point. 
 
Skull Thickness Map: Talu has previously developed a 3D Slicer extension, which is available on GitHub, 
that can automatically calculate the thickness map of bone structures in MRI data [37]. Although 
segmentation of the bone structure from MRI data can be manually performed using 3D Slicer 
extensions, the developed thickness extension automates the process. This extension comprises two 
main stages: (1) calculation of the mid-surface plane of the bone structure and (2) calculation of the 
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distances of bone structure voxels to this plane. Once the segmentation is complete, the thickness 
extension color-codes skull surface voxels based on their thickness values, and this information is 
transferred as input to the entry point detection software. 
 
Ventricular Segmentation: Ventricles, comprising four adjoining regions, are critical to producing 
cerebrospinal fluid. Segmentation of these regions has been the focal point of recent studies [38], [39], 
[40]. Hua et al. [38] implemented a U-Net-like architecture that yielded an accuracy of 85%, whereas 
Ye et al. [39] utilized MB-Net, achieving a 90% accuracy rate. In our study, we employed the pre-trained 
version of the state-of-the-art SynthSeg+ model developed by [41], specifically for the task of lateral 
ventricle segmentation. The SynthSeg+ model fuses structural and anatomical information from MRI 
scans to segment multiple MR contrasts, resolutions, and orientations. Additionally, it can perform 
tasks such as cortical parcellation and intracranial volume estimation [41]. The use of this pre-trained 
model has enabled us to efficiently and accurately segment lateral ventricles, thus significantly 
facilitating our research process. 
 
Cerebrovascular Segmentation: In the realm of cerebral vessel segmentation for automatic brain biopsy 
systems, diverse models and architectures such as BRAVE-NET [42] and DeepVesselNet [43] have been 
previously presented in the literature. However, given the absence of pre-trained weights for these 
models, they pose difficulties in terms of direct application and adaptation. For this reason, we opted 
to utilize a 3D Residual U-Net [44] architecture for brain vessel segmentation in our automatic brain 
biopsy system. 
 
The 3D Residual U-Net architecture builds upon the foundational U-Net [45] structure while 
integrating the principles of residual learning. The traditional U-Net design, known for its proficiency 
in many medical imaging tasks, is an end-to-end fully convolutional network (FCN) that features a 
contracting path to capture context and an expansive path for precise localization [44]. 
 
The innovation in this 3D Residual U-Net architecture lies in its employment of residual blocks. In 
residual learning, the model is trained to learn the residual or difference between the input and the 
desired output, rather than attempting to learn the entire mapping [44]. This is achieved through 
shortcut connections that bypass one or more layers, allowing for direct backpropagation of the 
gradient to earlier layers and thereby mitigating the problem of vanishing gradients in deeper 
networks. 
 
In summary, the 3D Residual U-Net architecture capitalizes on the advantages of the U-Net design and 
residual learning, offering a potent solution for cerebrovascular segmentation in our automatic brain 
biopsy system. 
 
Registration: Each brain region is responsible for a different functional role and has a different impact 
on the orbit risk score. For example, surgeons avoid entering the brain region responsible for physical 
function (motor) during biopsy procedures. Functional regions are determined after obtaining 4D fMRI 
data. However, the acquisition time for fMRI data is about 30 minutes, and it requires different 
equipment than a conventional MRI device, which is not widely available. These limitations hinder the 
use of fMRI in clinical applications. In this study, a different method for detecting functional brain 
regions is proposed. The proposed method is based on overlapping a common atlas data onto the 
patient's data. Common atlas data are created by expert surgeons considering the MRI data of many 
healthy individuals and have widespread use in the field. Atlas data for four different age groups are 
available from [46]. 27 different brain regions are labeled in each age group's atlas data. In this study, 
first, which brain region is in which functional region is determined, and 27 brain regions are expressed 
in 4 different functional regions. Then, the atlas data appropriate for the patient's age overlapped onto 
the patient's MRI data. During overlapping, segmented ventricular structures are used as reference. 
That is, the atlas ventricle overlapped onto the patient's ventricle. Thus, functional regions are detected 
without using fMRI. 
 
Entry Point Detection: All points on the surface of the skull are candidate entry points. At this stage, the 
selection of the entry point with the lowest Entry-Target orbit risk is made. If the 𝑘𝑡ℎ candidate entry 
point is denoted by 𝐶𝑛𝑑𝑘  (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑘)  and the tumor center is denoted by 𝑡𝑐 , then 𝑌𝑘 =
[𝐶𝑛𝑑𝑘 , 𝑡𝑐] represents the 𝑘𝑡ℎ orbit. The risk score of the 𝑌𝑘  orbit is calculated using Equation 1, and the 
orbit with the lowest risk score among all orbits, 𝑌𝑜𝑝𝑡 , is calculated using Equation 2. 
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𝑟𝑖𝑠𝑘(𝑌𝑘) =  𝛼 ∗  𝑟𝑖𝑠𝑘𝑘
𝑔𝑒𝑜 +  (1 −  𝛼) ∗  𝑟𝑖𝑠𝑘𝑘

𝑠𝑡𝑟𝑢𝑐𝑡 (1) 

𝑌𝑜𝑝𝑡 =  𝑚𝑖𝑛
𝑘 ∈𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐸𝑛𝑡𝑟𝑖𝑒𝑠

𝑟𝑖𝑠𝑘(𝑌𝑘)  (2) 

The variable 𝑟𝑖𝑠𝑘𝑘
𝑔𝑒𝑜  and 𝑟𝑖𝑠𝑘𝑘

𝑠𝑡𝑟𝑢𝑐𝑡  represent the geometric and structural risks of the 𝑘𝑡ℎ trajectory, 
respectively. The parameter 𝛼 is used to adjust the relative importance of geometric and structural 
risks. If there are multiple trajectories with the same minimum risk value, the one with the shortest 
length is preferred. 
 
The geometric risk of the 𝑘𝑡ℎ trajectory (Equations 3-6) is calculated based on the trajectory length, 
skull thickness, and similarity to the tumor axis. This risk value is normalized to produce an output in 
the range of [0-1]. 

𝑟𝑖𝑠𝑘𝑘
𝑔𝑒𝑜 =  

(𝑙𝑒𝑛𝑔𝑡ℎ𝑘 +  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑘 +  𝑎𝑥𝑖𝑠𝑘)

3
 (3) 

𝑙𝑒𝑛𝑔𝑡ℎ𝑘 =  
‖𝐶𝑛𝑑𝑘 −  𝑡𝑐‖ − 𝑚𝑖𝑛(‖𝐶𝑛𝑑𝑘 −  𝑡𝑐‖)

𝑚𝑎𝑥(‖𝐶𝑛𝑑𝑘 − 𝑡𝑐‖) − 𝑚𝑖𝑛(‖𝐶𝑛𝑑𝑘 − 𝑡𝑐‖)
  (4) 

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑘 =  
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑘 − 𝑚𝑖𝑛(𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)

𝑚𝑎𝑥(𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) − 𝑚𝑖𝑛(𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
 

(5) 

𝑎𝑥𝑖𝑠𝑘 =  𝑐𝑜𝑠𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡𝑎𝑥𝑖𝑠 , 𝐶𝑛𝑑𝑘 − 𝑡𝑐) (6) 

The structure risk of the 𝑘𝑡ℎ trajectory is calculated as in Equations 7-11. 

𝑟𝑖𝑠𝑘𝑘
𝑠𝑡𝑟𝑢𝑐𝑡 =  𝑣𝑒𝑠𝑠𝑒𝑙𝑘 +  𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒𝑘 +  𝑓𝑢𝑛𝑐𝑘  (7) 

𝑣𝑒𝑠𝑠𝑒𝑙𝑘 =  𝑐𝑣𝑒𝑠𝑠𝑒𝑙 ∗ ∑ 𝐷𝑖𝑠𝑡(𝐵𝑙𝑜𝑜𝑑𝑉𝑒𝑠𝑠𝑒𝑙𝑠) ∩ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑘 (8) 

𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒𝑘 =  𝑐𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒 ∗  ∑ 𝐷𝑖𝑠𝑡(𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒𝑠) ∩ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑘  (9) 

𝑓𝑢𝑛𝑐𝑘 =  𝑐𝑓𝑢𝑛𝑐 ∗  ∑ 𝑆𝑢𝑙𝑐𝑖 ∩ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑘  (10) 

𝑆𝑢𝑙𝑐𝑖 =  ∑ 𝑐𝑚
𝑓 ∗  𝑀𝑜𝑡𝑜𝑟 +  𝑐𝑠

𝑓 ∗  𝑆𝑝𝑒𝑒𝑐ℎ + 𝑐𝑣
𝑓 ∗  𝑉𝑖𝑠𝑖𝑜𝑛 +  𝑐𝑝

𝑓 ∗  𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 (11) 

The effects of brain structures on creating risk are different. During surgery, entering a blood vessel is 
avoided due to its clinical importance and potential for causing hemorrhagic complications. In this 
study, the structure risk coefficients (𝑐𝑣𝑒𝑠𝑠𝑒𝑙 , 𝑐𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒 , 𝑐𝑓𝑢𝑛𝑐) are determined as (0.4,0.3,0.3), 

respectively. The impact of functional regions (motor, speech, vision, and perception) on the trajectory 

risk score is determined by coefficients (𝑐𝑚
𝑓 , 𝑐𝑠

𝑓 , 𝑐𝑣
𝑓 , 𝑐𝑝

𝑓) which are determined as (0.4,0.3,0.1,0.2), 

respectively. These coefficients are quite similar to those used in Trope's study. In Trope's study, the 
coefficients were determined by five different brain surgery specialists [18]. 
 
When calculating structural risk, a rectangular prism (ROI) is used similar to the study by Sparks et al. 
[47] (Figure 10). The prism, whose width can be adjusted by the surgeon, limits the area where 
trajectory risk is calculated. 
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Figure 10.  The prism (ROI) is used when calculating the risk value of the "Entry-Target" candidate trajectory. 

(“Giriş-Hedef” aday rotasının risk değeri hesaplanırken prizma (ROI) kullanımı.) 

 
In contrast to Sparks' study, an original risk calculation approach is used in this study. When calculating 
the trajectory risk score, Sparks evaluates brain structures within the ROI in two levels (Figure 11-left). 
Thus, he uses only the binary result of whether the trajectory intersects with these structures or not in 
the risk calculation. In the proposed approach, however, brain structures are evaluated in a grayscale 
based on their distance from the edge, rather than two-level evaluation (Figure 11-right). This 
evaluation captures the difference between passing through the center of the structure and passing 
through the edge. Passing through the center has a higher impact on the risk factor, while passing 
through the peripheral area has a lower impact. 
 

Figure 11.  Calculation of the trajectory risk value. Blue: "Entry-Target" candidate trajectory, Red: ROI 
boundaries. Sparks et al. [29] approach (left), Proposed approach (right). 

(Rota risk değerinin hesaplanması. Mavi: “Giriş-Hedef” aday rotası, Kırmızı: ROI sınırları. Sparks ve ark. [29] yaklaşımı (sol), 
Önerilen yaklaşım (sağ)) 

 



13 

 

 

E-ISSN: 2651-5350 © 2025 Parantez T  

Şahin & Talu 

3. Results and Discussion (Sonuçlar ve Tartışma) 
 
3.1. Analysis of Cerebral Vasculature (Beyin Damar Yapısının Analizi)  

3.1.1. Dataset (Veri kümesi)  

The TubeTk dataset from the University of North Carolina was employed for brain vessel segmentation 
in this study. The dataset includes 100 pairs of MRI and MRA images acquired from healthy individuals 
using a Siemens Allegra 3T MR system [48], [49]. An important detail to note is that not all MRA images 
possess segmentation labels; only 42 images do. From these, 35 images formed the training set and 7 
the test set. Data pre-processing encompassed converting segmentation labels into a format suitable 
for 3D segmentation via the 3D Slicer program, which is critical to enhancing the segmentation 
process's efficacy and accuracy. 
 
3.1.2. Implementation detail (Uygulama detayları) 

The model was trained using the 3D Residual U-Net model and optimized with Dice Loss, a metric 
effective in segmentation problems. During the training, the Adam optimization algorithm was utilized, 
with 1e-4 set as the initial learning rate. The model was trained on NVIDIA's RTX A6000 GPU, with two 
samples at each training step, totaling 600 epochs. The process ensured successful training and testing 
of the model, enhancing its performance over time. 
 
3.1.3. Quantitative evaluation (Nicel değerlendirme) 

In order to conduct a comprehensive quantitative evaluation of our model's performance, we leveraged 
a variety of widely accepted metrics to analyze the outputs from our test dataset [50]. These metrics 
included the Dice Similarity Coefficient (DSC) [51], Mean Absolute Error (MAE) [52], Hausdorff 
Distance (HD) [53], and the Structural Similarity Index (SSIM) [54]. By utilizing these different 
measures, we were able to provide a multi-faceted analysis that collectively offered a robust appraisal 
of the model's performance. 
 
The Dice Similarity Coefficient (DSC), a common measure in segmentation tasks, evaluates the overlap 
between the model's predictions and the target. A high DSC value (0.8010) indicates that the model's 
segmentation results closely align with the target, suggesting a high level of accuracy. Mean Absolute 
Error (MAE), another metric, gauges the magnitude of errors made by the model. The low MAE value 
(0.0021) signals that the model's predictions are largely accurate, with a minimal deviation from the 
target values. Hausdorff Distance (HD), a more specific measure, calculates the greatest of all the 
distances from a point in one segmentation to the closest point in the other segmentation. Our model's 
HD value of 2.4614 shows that the model's segmentation results are generally quite close to the actual 
segmentation results. Lastly, the Structural Similarity Index (SSIM), measuring the structural similarity 
between two images, returned a high value of 0.9769 for our model. This suggests that the 
segmentation generated by the model effectively mimics the structural characteristics of the actual 
segmentation. Together, these metrics indicate a high overall segmentation performance of the model, 
generating results closely approximating the target segmentation results. 
 
3.1.4. Visual analysis (Görsel analiz) 

Beyond numerical evaluation, we performed an in-depth visual analysis to further understand our 
model's performance in vascular segmentation in brain MRA images. We selected five different 
examples randomly from the test set and allowed our model to make predictions on these. For each 
image, we compiled a series of visuals featuring the input MRA image, the corresponding ground truth 
(actual segmentation), and the model-generated segmentation result. Due to the inherent complexity 
of representing 3D images on a 2D plane, we utilized the Maximum Intensity Projection (MIP) values 
of each image to streamline the visual comparison process. MIP, which projects 3D data onto a 2D plane, 
is particularly effective in visualizing the vascular network. These results, presented in a three-column 
format in Figure 12, provide a clear visual representation of the model's segmentation capabilities. The 
side-by-side display of the original MRA images, their actual segmentations (ground truth), and the 
MIPs of our model's segmentation results underscores the general similarity between the model's 
output and the actual segmentations, visually validating the model's robust segmentation performance. 
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Figure 12.  Side-by-side comparison of original MRA images, ground truth, and 3D Residual U-Net's 
segmentation results, visually validating the model's robust performance. 

(Gerçek MRA görüntüleri, gerçek ve 3D Residual U-Net segmentasyon sonuçlarının yan yana karşılaştırması; modelin güçlü 
performansını görsel olarak doğrulamaktadır.) 

 

3.2. Examination of Optimal Trajectory (En Uygun Rotanın İncelenmesi)  

The 3D Slicer development environment has been preferred for the implementation activities of the 
proposed biopsy system. The fact that Slicer is open-source, free, and has an active community has been 
an important factor in this choice. Although it is written in C++, when a new module is to be added to 
Slicer, the Python programming language can be used. This feature allows Slicer to expand quickly. All 
sub-modules of the proposed biopsy system (Ventricle registration, Vascular tree segmentation, Entry 
point detection, etc.) are coded to run in Slicer software with Python programming language. 
 
Figure 13 demonstrates visually how the optimal trajectory detection process is performed on an 
example patient MRI data using the developed software plugin. Firstly, the brain region (transparent 
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green area) is detected using MRI data. Then, the tumor structure (yellow structure inside) is manually 
segmented. After the segmentation process is completed, the center point of the tumor (target point) 
is calculated. Slicer's existing plugins are used for these operations. Next, surface points are obtained 
by performing model transformation of the brain region. Although the number of surface points is 
variable depending on the individual, it usually reaches the level of hundreds of thousands. Therefore, 
the point cloud is decimated to reduce this number to the level of hundreds. Then, the distances 
between each point in the point cloud and the target point are calculated, and the point (center point) 
with the shortest length is detected. Surface points within the circle centered on this point (candidate 
entries) are determined. After determining the candidate entries, the risk values of each candidate 
Entry-Target trajectory are calculated. The prism shown in Figure 10 is used for this purpose. Risk 
scores are calculated by evaluating vascular structures and functional structures within the prism. The 
risk scores calculated for 21 different trajectories are listed in Table 1. The results show that there is a 
strong relationship between the distance to the target and the risk score of the trajectory. When the 
results are carefully examined, it is observed that the trajectory with a shorter length does not 
necessarily have a lower risk score. However, in general, a proportional relationship was observed 
between the distance of the candidate entry point to the target and the trajectory risk value. 
 

Figure 13.  Visualization of the risk calculation process for candidate trajectories. 

(Aday rotalara ilişkin risk hesaplama sürecinin görselleştirilmesi) 
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Table 1. Trajectories Distances and Risk Values. (Rotaların Mesafeleri ve Risk Değerleri.) 

Trajectories  
(Entry - Target) 

Distance to Target 
(mm) 

Risk Scores 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟐𝟏 65.70 8698.48 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟗 72.78 9479.92 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟕 72.17 9729.64 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟑 70.37 9946.39 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟒 68.94 9965.16 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟐𝟎 69.93 10018.44 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟎 70.82 10372.35 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟖 71.63 10632.26 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟔 72.79 10749.02 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟕 70.57 10996.37 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟓 74.25 11070.54 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟓 75.20 11650.78 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟖 76.74 11675.82 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟑 73.29 11688.69 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏 74.04 11837.02 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟐 78.30 12524.36 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟏𝟏 75.98 12525.06 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟎 79.35 12830.67 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟗 75.16 12902.58 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟒 78.20 13146.42 

𝑪𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆𝟔 80.04 13902.70 

 
3.3. Disadvantages of Classic Biopsy (Klasik Biyopsinin Dezavantajları)  

There are some disadvantages of classic stereotactic biopsy. Firstly, it is performed in two sessions. 
Thus, the metal device is attached to the patient's head twice and imaging procedures are repeated 
twice. This leads to time and labor loss for both the patient and healthcare personnel. Additionally, 
there is a risk of damage or even fracture to the patient's skull during the attachment of the metal 
device. Secondly, manual marking and measurements on MRI images are performed by surgeons 
during the planning phase. This makes the success of the operation highly dependent on the surgeon's 
experience. The third disadvantage is the use of expensive biopsy software (such as Inomed, Brainlab, 
and Monteris) [55]. 
 

4. Conclusion (Sonuç) 
 
This study presents a novel stereotactic brain biopsy system that utilizes MRI and MRA data from 
patients and incorporates automatic trajectory planning software to identify target and entry points. 
The distinguishing features of the proposed trajectory determination approach include: (1) the 
capability to perform the biopsy procedure in a single session, (2) full automation, (3) the first-time 
incorporation of skull thickness information in trajectory calculations, and (4) a unique trajectory risk 
score calculation method. The innovative trajectory risk score approach combines two risk values 
(geometric and structural). Geometric risk is assessed based on trajectory length, skull bone thickness, 
and alignment with the tumor's primary axis, while structural risk pertains to the trajectory's proximity 
to independent brain structures. Consequently, separate segmentation processes for brain structures 
(vascular network, ventricles, and functional areas) are conducted. 
 
Moreover, an original method for calculating structural risk is employed. This technique converts 
segmented brain structures into gray scales (by assigning edge distances to structure voxels) and 
computes the risk by enclosing them within a rectangular prism. Current studies utilize fMRI (long-
term, costly, and not widespread) to identify functional regions (motor, speech, vision, perception). In 
contrast, this study overlays a ready-made ATLAS dataset, with functional regions pre-determined by 
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surgeons using ventricular structures, onto the patient's MRI data. This allows for rapid detection of 
functional regions in patient data. Following the implementation of the proposed brain biopsy system, 
a proportional relationship was observed between the candidate entry point's distance to the target 
and the trajectory risk value. Future research plans encompass the development of novel methods for 
the detection of vasculature, tumor, and ventricles, as well as focusing on the refinement of the system's 
fully modular design. 
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