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1. Introduction

This type of cancer ranks seventh in prevalence among malignant endocrine tumors worldwide, while
it maintains the same rank among women and ranks fifteenth among men[8]. These data, although they
differ by gender, reveal that the disease is an important health problem in the general population[9].

Thyroid cancer diagnosis is often a meticulous and complex process. Most cases occur as thyroid
nodules, which are incidentally detected during neck imaging studies[10]. High-resolution ultrasound
stands out as one of the most effective methods for the detection and evaluation of thyroid nodules and
plays a critical role in the diagnosis of thyroid diseases. Ultrasound images allow radiologists to
examine important parameters such as the structure of nodules, echogenicity, presence of calcification,
border characteristics and size. In light of this information, radiologists can evaluate the risk of nodules
becoming malignant using standard scoring systems. This evaluation process is of great importance for
the early diagnosis of thyroid cancer and the planning of correct treatment strategies[11].

Research in this field is carried out with the aim of developing computer-aided diagnostic systems,
using neural networks and other machine learning techniques, and improving clinical decisions. In
particular, the use of machine learning and deep learning algorithms has the potential to support
clinical decisions and increase the effectiveness of the Feinnadel Aspiration (FNA) test[1].

Computer-aided diagnostic (CAD) systems developed for automatic thyroid nodule detection offer
revolutionary innovations in medical imaging. Among these methods, support vector machine (SVM)
based systems based on extracting image orientation patterns and powerful classifier algorithms such
as random forests and support vector machines that evaluate various features such as histogram
parameters and fractal dimension stand out[17]. In the field of machine learning, techniques such as
Dynamic Mutation-based Glowworm Swarm Optimization (DMGSO) algorithm, Long Short-Term
Memory (LSTM) model, and logistic regression have shown remarkable success in the selection of the
best features and nodule classification. These methods have significantly improved the efficiency of the
processes by increasing the correct identification and classification rates[20]. These advanced
techniques play a critical role not only for nodule detection and classification, but also for obtaining
more sensitive and reliable results in clinical decision support systems.

Deep learning is alearning method used in the field of artificial intelligence. This technology uses neural
networks that mimic the way the human brain works and can recognize complex patterns on large
amounts of data. Deep learning involves a series of mathematical operations used to improve and
recurse the representatives learned by a system. Deep learning models, which are usually trained on
large data sets, can achieve high success in tasks such as image recognition, natural language
processing, speech recognition, and similar tasks[15]. Deep learning generally includes special neural
network architectures such as convolutional neural networks (CNN) and recurrent neural networks
(RNN)[15]. The method we use in this study, Residual Network(ResNet), is a type of CNN. ResNet has
an architecture developed specifically to solve the problems encountered in the training of deep neural
networks[16].

In recent years, significant successes have been achieved in nodule classification and malignancy
prediction with deep learning model training on large data sets in research in this field[12-14]. Deep
learning algorithms have strong capabilities in image processing and feature extraction and can
effectively analyze data obtained from imaging techniques such as ultrasonography or computed
tomography. These models can help doctors determine the benign or malignant probability of thyroid
nodules and help determine treatment plans by providing objective and reliable support[1].

However, the integration of these technological developments into clinical practice also brings with it
important issues such as ethics, safety and standardization. Machine learning techniques used in the
evaluation of thyroid nodules need to be carefully examined and correctly applied in order to improve
clinical practice and optimize patient health outcomes. In this context, adopting a balanced approach
on how to use technological advances in the field of health is of critical importance in terms of achieving
the most effective results for both healthcare professionals and patients.

The aim of this study is to understand the potential of deep learning algorithms in the evaluation of
thyroid nodules and to evaluate the effectiveness of these algorithms in clinical applications. The
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findings obtained are based on the technology used in medical diagnosis processes.

2. Literature Review

The evaluation of thyroid nodules is of great importance in both medical diagnosis and treatment
processes. In recent years, research has revealed the potential of neural networks and other machine
learning techniques in developing computer-aided diagnosis systems. This literature review discusses
the success and difficulties encountered in the evaluation of thyroid nodules by various neural network
models and classifier algorithms.

Many CAD methods have been developed for the automatic detection of thyroid nodules. In 2007
Savelonas and his team developed a CAD system based on radon transformation and SVM, achieving a
high classification accuracy of 89% based on data from 66 patients. [17]. In 2011, Ding and his team
used SVM to classify thyroid nodules and achieved successful results on a dataset of 125 patients[18].
In 2019, Prochazka and his team achieved a breakthrough in differentiating between malignant and
benign nodules by utilizing random forests and support vector machines (SVM). They focused on key
image analysis features like histogram parameters, fractal dimension, and mean brightness value,
which were instrumental in their successful classification[19].

The year 2020 saw the development of various innovative approaches for the classification of thyroid
nodules. Sathyapriya and Anitha used the DMGSO algorithm to select optimal features and employed
the LSTM model to classify nodules[20]. In the same year, Ma and his team evaluated five different
machine learning methods and tested the performance of these models with four different distance
measures[21]. Miao and his team analyzed the variables affecting malignant nodules using logistic
regression and worked on ultrasound imaging reporting and data system classification results[22].

In recent years, the potential of deep learning-based CAD systems for thyroid nodule detection has
increased. In 2017, Chi and his team extracted features from thyroid ultrasound images using deep
convolutional neural networks and transferred these features to a cost-sensitive random forest
classifier, achieving high accuracy[24]. In 2019, Ouyang and his team compared non-linear and linear
machine learning algorithms and showed that non-linear algorithms are also effective[25]. In the same
year, Zhang and his team developed a diagnostic model based on conventional ultrasound and real-
time elastography, demonstrating that this model outperformed the diagnostic accuracy of
radiologists[26].

Wang and his team, in 2020, showed that deep learning-based methods outperformed radiomics when
they compared the performance of the two approaches[27]. In the same year, Song and his team
developed a hybrid multi-branch convolutional neural network based on feature cropping[28]. Xie and
Yuan combined deep neural networks with traditional features and achieved successful results in
classifying nodules[13, 14].

In 2021 and 2022, notable advancements were made in the classification of thyroid nodules. Liu et al.
introduced an innovative information fusion technique using a dual-branch convolutional neural
network, while Vadhiraj et al. evaluated and compared the performance of support vector machines
and artificial neural networks, focusing on metrics such as accuracy, sensitivity, and specificity[29, 30].
Employing various machine learning techniques, Luong et al. in 2022 reached an accuracy of 79.10%
in forecasting the malignancy of thyroid nodules with uncertain diagnoses[32].

Xu et al. (2022) proposed C-LSTM, an ultrasound image diagnosis model based on long and short-term
memory neural network (LSTM). They obtained an AUC value of 0.86[38].

Jiang et al. in 2022 used the "Attention U-Net" architecture, a deep learning-based approach to classify
thyroid nodules. With this method, they achieved a higher accuracy rate than the traditional U-Net
model, and this success demonstrated the effectiveness of attention-based networks, especially in
small nodule segmentation. In their research, they showed that attention mechanisms have an
important contribution in the process of selecting image features[39].

In 2023, Tianlei et al. DSRU-Net achieved an average Intersection coefficient of 85.8%, average dice
coefficient of 92.5% and nodule dice coefficient of 94.1% over Union, which increased by 1.8%, 1.3%
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and 1.9% compared to U-Net, respectively[40].

In this literature review, we have reviewed many studies that have effectively applied CAD methods,
especially neural networks and other machine learning algorithms, to the evaluation of thyroid
nodules. Research from 2007 to the present has evaluated the performance metrics of various
algorithms and techniques, including accuracy, sensitivity, and specificity, presenting the strengths and
weaknesses of each method. While CAD systems appear to have significant potential in the
classification of thyroid nodules as malignant or benign, the performance differences between different
approaches indicate that further research and improvements are still needed in this area. Deep
learning-based methods are expected to outperform traditional methods, and they may become a
standard tool in the diagnosis of thyroid nodules in the future. Furthermore, the integration of these
systems into clinical decision support systems can contribute to more accurate and consistent
diagnosis processes that are free from subjectivity. However, the performance of deep learning-based
systems is often dependent on large amounts of medical image data, and thyroid nodule image data is
often limited and expensive.

Therefore, in this study, a new method is developed based on image enhancement technology to fully
utilize the limited image data information. Four metrics that are important for clinical usability such as
Accuracy, PPV and NPV are used as the prominent performance metrics in this study and it is observed
that the proposed method outperforms the existing thyroid nodule diagnosis systems in these metrics.

3. Methodology

This study aims to develop an image analysis model for the evaluation of thyroid nodules using machine
and deep learning algorithms. First, we focus on the FNA procedure, which is widely used in the
evaluation of thyroid nodules. FNA is a preferred method, especially for nodules over 2 cm, even if the
suspicion of malignancy is low[1]. However, there are risks and costs associated with this procedure.
Therefore, this study aims to develop a model for evaluating FNA results and predicting the benign or
malignant status of nodules using deep learning algorithms[2].

The use of machine and deep learning algorithms has led to significant advances in the field of medical
image analysis, especially in recent years. These algorithms are known for their ability to recognize and
learn complex patterns when trained on large data sets. The process of analyzing and classifying
thyroid nodules using deep learning algorithms is illustrated in Figure 1. This approach leverages
advanced computational methods to enhance accuracy and efficiency in medical diagnostics.

Data
Preprocessing

Original
Image

Image Data

Data
Preprocessing

Training
Data Test
Classification Accuracy
Models
Test Data

Diagnostic
Accuracy

Figure 1. Thyroid nodule processing classification process in deep learning algorithms
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In the classification process shown in Figure 1, the image data obtained from the original image is used
for training and testing the classification models. In this process, some of the image data is utilized as
training data, while the remaining image data is employed as test data. The training data is used for
learning the classification models, while the test data is used to evaluate the performance of the models.
After the training process, the classification models are run on the test data and the diagnostic accuracy
of these models is measured. When a new image is obtained, the data extracted from this image is also
input into the classification models and the diagnostic accuracy of the models on this new data is
evaluated. This process focuses on training and testing the classification models and improving their
ability to make accurate diagnoses on new images.

3.1. Dataset

In this study, an open access dataset called DDTI (Digital Database of Thyroid Ultrasound Images) was
used in the examination of thyroid nodules. This valuable dataset was created in collaboration with
Universidad Nacional de Colombia, CIM@LAB and IDIME (Instituto de Diagnostico Medico) and
provides an important resource for scientific research. The main purpose of the DDTI dataset is to
create algorithms for the development of CAD systems in the evaluation of thyroid nodules. In addition,
the dataset is designed as an effective tool for the education and training of new radiologists[37].

The DDTI dataset contains 375 cases and 440 images, and each case is presented with an XML file
containing expert markings and patient information. The 375 cases examined in this study were
divided into three groups according to the TIRADS classification. This dataset is expected to help us
better understand thyroid nodules and improve diagnostic processes[7].

Benign: Cases in this group include conditions that indicate that the thyroid nodules are benign. Benign
nodules are usually harmless and have a low likelihood of cancer. Analysis of cases in this category is
important for understanding positive thyroid health outcomes.

Malignant (Suspicious Feature): Cases in this group include conditions that indicate that thyroid
nodules have suspicious features. Nodules with suspicious features indicate a higher likelihood of
cancer and may require further evaluation or follow-up. Examination of these cases is critical for early
detection and treatment.

Normal: This category includes cases where thyroid nodules do not show any suspicious or malignant
features. That is, thyroid nodules are classified as normal and healthy.

Table 1. TIRADS Classification

TIRADS Interpretation

1 Normal thyroid gland

2 Benign lesion

3 Probably benign lesion

4ab,c Suspicious of malignancy

5 Probably malignant(>80% risk)
6 Biopsy proven malignancy

TIRADS classification is a very important and widespread system used in the evaluation of thyroid
nodules. This classification allows nodules to be categorized according to their different characteristics,
helping doctors make more accurate diagnoses and patients avoid unnecessary procedures. In
particular, TIRADS, which plays a critical role in determining the malignancy risk of nodules, provides
valuable guidance to clinical practice. In this way, the most appropriate treatment plan for patients can
be determined while avoiding unnecessary biopsies and surgical interventions. (Table 1). This
classification is an important tool used in clinical applications and in the development of CAD systems.
The distribution of the images in the dataset into these groups is given in Table 2 below.

Table 2. Distribution of images according to classification in the dataset

Classification Number of Images in the Data Set
Benign 59

Malignant 261

Normal 100
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3.2. Data Preprocessing

CNN based models usually expect a certain input size and frame size. In accordance with the Inception-
ResNet-v2 model that we will use in this study, we resized the images in our dataset as (224x224)
frames[16, 33].

3.3. Data Augmentation

In order to effectively compare the results of our developed learning model, two distinct methods were
implemented: one with data augmentation techniques and one without. The techniques applied
included modifications in brightness, contrast, saturation, and hue. These data augmentation
techniques are particularly valuable for enhancing model performance by effectively increasing the
variety and size of training datasets. Since deep learning models benefit significantly from large
datasets, data augmentation provides an alternative to data collection by transforming a limited
dataset into a more extensive, varied one, improving the model's ability to generalize.

In our study, given the constraints of a limited dataset, data augmentation played a crucial role. By
creating new data through deformation operations, these techniques enabled a more comprehensive
training process, allowing our model to learn from a more diverse dataset. The augmented data proved
instrumental in enhancing model performance by reducing overfitting and improving accuracy,
particularly by simulating various real-world conditions that the model might encounter. This aligns
with the principle that expanded datasets provide richer information for deep learning architectures,
ultimately leading to better outcomes with minimal data collection efforts[34].

4. Experimental Setup

Neural network training was performed to classify benign and malignant nodules using preprocessed
US images. In this context, the most popular image recognition model Inception-ResNet-v2 was used
by applying a transfer learning method.

Inception-ResNet-v2 is a deep learning model that combines the Inception and Residual Network
(ResNet) architectures. The Inception architecture has parallel convolution layers that allow
processing image features with filters of different sizes, thus enabling the model to have a wider
information coverage. Inception-ResNet-v2, which also incorporates the “skip connection” structure, a
core component of ResNet, prevents the loss of information from the deep layers, enabling faster and
more effective learning.

With the combination of these two powerful architectures, Inception-ResNet-v2 can learn richer
features from data and at the same time work with a deeper network structure. The model has been
tested on large datasets such as ImageNet and outperforms many other deep learning models in terms
of accuracy. In particular, it stands out for its lower computational costs despite having more complex
architectures. This makes the model effectively usable even on devices with limited resources, making
it a preferred choice for a variety of applications.

ResNet, introduced by Kaiming He and colleagues in 2015, represents a significant advancement in
CNNs. Despite being eight times deeper than VGGNet[35], ResNet manages to maintain a lower
computational cost[16]. This innovative architecture led to a remarkable achievement in the 2015
ImageNet competition, where it achieved an impressive error rate of just 3.57%[36].

ResNet features an architecture specifically engineered to enhance both the training process and
overall performance of very deep neural networks[16]. In traditional neural networks, performance
issues can arise as they get deeper because training deeper models can become difficult. ResNet solves
this problem by adding layers that cross connections. This is done by adding a connection to the output
of the previous layer, instead of the network forwarding the output of one layer directly. These “skip
connections” allow the gradient to be transmitted more efficiently during backward traversal and make
deep networks easier to learn. In this way, ResNet makes it possible to train much deeper and more
efficient neural networks.

Two different models, ResNet101v2 and ResNet151v2, were implemented with different
hyperparameters. In the studies, the data set was randomly divided into 80% training data and 20%
test data.

4.1. Experimental Setup
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In machine learning, evaluating the success of a model is done through performance measurement.
This step is critical to understanding how effective the model is because only a well-performing model
can produce successful results in the real world. Performance measurement provides the feedback
needed to improve the model and minimize errors. Therefore, evaluating a model is an essential part
of the process. As these performance metrics, 4 metrics are considered: Accuracy, PPV, NPV and FDR.
Setting PPV, FDR and NPV as the main criteria instead of accuracy rate to evaluate the performance of
the models evaluated on health data reflects the aim of measuring accurate diagnosis and prediction
capabilities in the health field. In this context, in order to understand and evaluate the results obtained,
the PPV value obtained from the Confusion Matrix indicates the ratio of positive predictions to true
positives, while the FDR value indicates the ratio of false positive predictions to all positive predictions.
NPV, on the other hand, stands out as valuable metrics that measure the success of negative predictions
in accurately predicting true negative situations. These metrics were employed to further assess the
model's performance on health data and to gauge the clinical significance of the results.

4 _ TP;+ TN; '
ccuracy; = TP; + FP{+TN; + FN; o
TP;
e 2)
FDR; = ——— or FDR; = 1— PPV, 3)
- % (4)

Accuracy(eq. 1) is a measure of how accurately a model classifies thyroid nodules. In other words,
accuracy is the proportion of cases that the model correctly predicts out of all cases. However, accuracy
alone may not always be a sufficient measure of performance. For example, if there are many cases
without nodules, the model may achieve a high accuracy rate by correctly predicting these cases. In this
case, evaluation with other performance metrics is necessary to better understand the true
performance of the model. PPV (eq. 2) and NPV (eq. 3) are the ratio of true positive and true negative
results, positive and negative results respectively.

The results obtained with different deep learning algorithms used in this study are given in Table 3.
These results were achieved with Intel Core i7, 2.0 GHz CPU, 16 GB RAM and NVDIA GeForce GTX
1050M 4GB DDR5 GPU, Windows® 10 operating system. Uses the Python (3.11) programming
language. Keras(3.0) and Tensorflow(2.15) libraries were used for the creation, training and evaluation
of deep learning models (Resnet).

Table 3. Results obtained with different deep learning algorithms

Name Model Learning Rate  Optimization Data Accuracy
Algorithm Augmentation

Model-1 ResNet151v2 0.0006 Adam No 90%

Model-2 ResNet101v2 0.0001 Adam No 85%

Model-3 ResNet151v2 0.0006 Adam Yes 91%

Model-4 ResNet101v2 0.0001 Adam Yes 92%

The Learning Rate information shared in the chart is a hyperparameter used to determine the updated
parameter values of a machine learning model. This hyperparameter controls how many “steps to take”
at each update step during the training of a model. That is, the learning rate determines the size of the
update steps to minimize the loss function of the model.

The ResNet deep learning architecture generally uses Adam (Adaptive Moment Estimation) as an
optimization algorithm for training deep learning models. Adam tries to combine the advantages of
other popular optimization algorithms and combines momentum-based methods with adaptive
learning speed.

Considering the results in Table 3, Adam was used as the optimization algorithm in all studies. The
experimental results in the table can be expressed as follows. When the data augmentation techniques
mentioned in section “4.3. Data Augmentation” are applied to the same models with the same
hyperparameters, the effect on the results is measured. As can be seen in the table, while data
augmentation techniques were not used in experimental studies 1 and 2, they were used in
experimental studies 3 and 4. It was observed that accuracy values increased positively in both models.
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The tables below present the accuracy performance of the four models in the benign, malignant and
normal classes and the associated PPV, FDR and NPV values. Comments on the performance of each
model are given immediately after the results.

Table 4. Performance Results for Model-1, Model-2, Model-3 and Model-4

Model Confusion Matrix PPV(%) FDR(%) NPV(%)
Model-1 Benign: (3, 6, 0) Benign: 33 Benign: 67 Benign: 75
Malignant: (1, 41, 0) Malignant: 97.6 Malignant: 2.4 Malignant: 100
Normal: (0, 0, 19) Normal: 100 Normal: 0 Normal: 100
Model-2 Benign: (4,5, 0) Benign: 44.4 Benign: 65.6 Benign: 80
Malignant: (1, 40, 1) Malignant: 97.6 Malignant: 2.4 Malignant: 95.2
Normal: (1, 2, 16) Normal: 88.9 Normal: 11.1 Normal: 94.1
Model-3 Benign: (48, 10, 6) Benign: 82.7 Benign: 17.3 Benign: 100
Malignant: (0, 269, 8) Malignant: 97.1 Malignant: 2.9 Malignant: 91.5
Normal: (0, 25, 98) Normal: 79.7 Normal: 20.3 Normal: 94.2
Model-4 Benign: (54, 8, 2) Benign: 87.1 Benign: 12.9 Benign: 85.7
Malignant: (9, 266, 2) Malignant: 96.7 Malignant: 3.3 Malignant: 99.25
Normal: (3, 19, 101) Normal: 98.3 Normal: 1.7 Normal: 84.1

Model-1 shows a low PPV in benign classes, but has a very good accuracy in malignant and normal
classes.

While Model-2 achieves higher PPV values in the benign and normal classes, its accuracy in the
malignant class is similar to Model-1.

Model-3 shows high accuracy in benign and malignant classes, while it achieves lower accuracy in the
normal class.

Model-4 stands out as the model with the best overall performance, offering high accuracy rates in
benign and normal classes.

Figure 2 and Figure 3 show the images obtained from the images separated as test data of Model-4
given in Table 3 and correctly classified as benign. Figure 4 and Figure 5 show the images obtained
from the images separated as test data of Model-4 and correctly classified as malignant. The images in
all these figures were randomly selected from among 54 images from the benign class and 266 images
from the malignant class that Model-4 successfully predicted. While the PPV value for the benign class
was 87,6, the model proved its success with a high prediction ability of 96,7 for the malignant class.

Predicted Image

Original Image

100 100 .
200 200
300 300
0 100 200 300 400 00 | 0 100 200 300 400 500

Figure 2. According to Model-4 results, the correctly predicted example from the benign class is Image-1
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Predicted Image
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Figure 3. According to Model-4 results, the correctly predicted example from the benign class is Image-2
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Figure 4. According to Model-4 results, the correctly predicted example from the malignant class is Image-1

Original Image Predicted Image
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Figure 5. According to Model-4 results, the correctly predicted example from the malignant class is Image-2

The images in all these figures are presented by combining the original image and the mask image
created by the prediction ability of the model. This situation tries to increase the success of the model
we obtained and at the same time, it helps clinicians who perform the examination by marking the
relevant regions in diagnosis and allows them to save more time and optimize the treatment processes.

4.2. Discusssion of Experimental Setup
In this study, the performance of four different deep learning models evaluated on thyroid nodules data

was comprehensively investigated. Among the criteria used to evaluate model performance, PPV, FDR
and NPV stand out. These metrics reflect the aim of measuring accurate diagnosis and prediction
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capabilities in the health field and are supported by evaluations obtained through the Confusion Matrix.

When the results obtained for the first model (Model-1) are examined, the high PPV value (97,6%) and
low FDR value (2,4%) in the Malignant class are remarkable. This shows that the model correctly
classifies malignant lesions and false positive predictions are at a minimum level. In the Benign class,
the PPV value (33%) is low, while the FDR value (67%) is high. This shows that benign lesions are
predicted with lower accuracy by the model.

For the second model (Model-2), high PPV (97,6%) and low FDR (2,4%) values were observed in the
Malignant class, while PPV (44,4%) and FDR (65,6%) values in the Benign class improved compared to
the previous model. This shows that the second model classifies benign lesions more accurately.

For the third model (Model-3), high PPV (97,1%) and low FDR (2,9%) values were maintained in the
Malignant class. In the Benign class, PPV (82,7%) and FDR (17,3%) values show that the model
classifies benign lesions more effectively.

For the last model (Model-4), high PPV (96,7%) and low FDR (3,3%) values in the Malignant class
continued in a similar manner. In the Benign class, PPV (87,1%) and FDR (12,9%) values show that the
model classifies benign lesions with higher accuracy. When NPV values are examined, it is seen that the
models generally achieve high accuracy in negative predictions, highlighting the ability of the models
to correctly identify healthy situations.

When the obtained results are evaluated, it is seen that deep learning algorithms, especially CNN,
provide high accuracy rates in the diagnosis of thyroid nodules. However, low accuracy rates in the
benign class reveal that more data and more sophisticated algorithms are needed to correctly classify
these classes. In addition, the limited data sets used limit the generalization ability of the models, and
this situation emphasizes the need for larger and more diverse data sets. At this point, it is seen that
data augmentation techniques contribute to performance improvements, but may not be sufficient to
obtain more comprehensive results in larger-scale studies. Therefore, expanding the data sets and
training the models on these larger data sets in future studies may provide more reliable and
generalizable results.

As a result, when the performance of four different models is examined, it is seen that each of them
achieves high accuracy in certain classes but has potential for improvement in some classes. These
findings provide an important basis for a detailed evaluation of model performance on health data and
for understanding clinical significance.

5. Conclusions

This study examines the performance of machine and deep learning algorithms used in the evaluation
of thyroid nodules, particularly evaluating their potential to support diagnostic decisions. The
experimental studies conducted evaluate the success of various models in classifying thyroid nodules.

The obtained results include a detailed analysis based on PPV and FDR values performed on benign,
malignant and normal classes. Although Model 1 has potential for improvement in the benign class, it
exhibited high performance in the malignant and normal classes. Model 2 increased the success in the
benign and normal classes, but there are still areas for improvement in the benign class. In particular,
Model 3 and Model 4 achieved high PPV values in all three classes, demonstrating successful
classification performance. These models are particularly notable for their high PPV and low FDR
values in the benign class.

The findings reveal that deep learning algorithms hold considerable promise for assessing thyroid
nodules. However, the need for improvement observed in the benign class highlights the need for
further work and development in this area. Future research should focus on the use of larger datasets
and advanced methodologies to improve model performance and obtain more reliable results in
clinical applications. In addition, the use of diverse and correctly labeled datasets is recommended to
strengthen the generalization ability of existing models. Such studies may contribute to the
development of a potential tool that can be used for rapid and accurate evaluation of thyroid nodules,
thereby reducing the risks and costs resulting from unnecessary FNA procedures.
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In the future, it is anticipated that the use of machine learning and deep learning technologies in the
diagnosis and evaluation of thyroid nodules will continue to increase. In particular, it is thought that by
training deep learning algorithms on larger and more diverse datasets, diagnostic accuracy and overall
performance can be further improved. In addition, the integration of artificial intelligence and machine
learning models into clinical applications will allow physicians to use decision support systems more
effectively.

In future studies, the performance of the model can be improved, and its generalization ability can be
strengthened by using a larger variety of correctly labelled data sets. The managerial implications of
these studies and future research can contribute to the development of a potential tool that can be used
for rapid and accurate assessment of thyroid nodules. This can provide faster diagnosis and treatment
planning, reducing the risks and costs resulting from unnecessary FNA procedures. Finally, the
regulation and standardization processes of Al-based diagnostic systems will need to be improved. The
establishment of legal and ethical frameworks for the safe and effective use of these technologies in
clinical applications will be one of the most important trends in the future. In this direction, the
importance of multidisciplinary studies and collaborations will increase.
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