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A	Hybrid	Particle	Swarm	Optimization	with	Tabu	Search	for	Optimizing	
Aid	Distribution	Route	
Alamou	Shola	Mouhsine	DAOUDAa ,	Ümit	ATİLA*b 	
	
ABSTRACT		
	
This	paper	explores	the	use	of	metaheuristic	algorithms	for	the	Multi-Depot	Vehicle	Routing	
Problem,	a	complex	form	of	the	Vehicle	Routing	Problem	crucial	in	logistics.	The	study	contributes	
to	operational	research,	offering	strategies	for	effective	logistics	management	and	underscores	the	
significance	of	metaheuristic	algorithms	in	tackling	intricate	optimization	problems.	The	study	
focuses	on	optimizing	vehicle	routes	from	multiple	depots,	using	a	k-clustering	technique	for	initial	
grouping.	It	examines	algorithms	like	Particle	Swarm	Optimization,	Artificial	Bee	Colony,	Ant	Colony	
Optimization,	and	a	hybrid	of	Particle	Swarm	Optimization	with	Tabu	Search.	These	algorithms	are	
vital	for	efficient	route	planning	in	varied	environments,	with	practical	implications	demonstrated	
in	real-world	logistics	scenarios.	The	findings	revealed	the	limitations	of	the	Particle	Swarm	
Optimization	PSO	algorithm	and	showed	the	improvement	with	Tabu	Search.	While,	the	resulting	
hybrid,	Particle	Swarm	Optimization	with	Tabu	Search,	demonstrated	remarkable	improvements	
and	stands	out	for	its	efficiency	and	reliability	in	Multi-Depot	Vehicle	Routing	Problem,	it	
underscored	the	potential	of	metaheuristic	algorithms	in	solving	Nondeterministic	Polynomial	Time	
-hard	combinatorial	problems.	
	

Yardım	Dağıtım	Rotası	Optimizasyonu	için	Tabu	Arama	
ile	Hibrit	Parçacık	Sürü	Optimizasyonu	
	
ÖZ		
	
Bu	makale,	lojistikte	hayati	öneme	sahip	Araç	Rotalama	Probleminin	karmaşık	bir	formu	olan	Çok	
Depolu	 Araç	 Rotalama	 Problemi	 için	 metasezgisel	 algoritmaların	 kullanımını	 araştırmaktadır.	
Çalışma,	 etkili	 lojistik	 yönetimi	 için	 stratejiler	 sunarak	 operasyonel	 araştırmaya	 katkıda	
bulunmakta	 ve	 karmaşık	 optimizasyon	 sorunlarının	 çözümünde	 meta-sezgisel	 algoritmaların	
öneminin	 altını	 çizmektedir.	 Çalışma,	 ilk	 gruplama	 için	 k-kümeleme	 tekniği	 kullanılarak	 birden	
fazla	 depodan	 araç	 rotalarının	 optimize	 edilmesine	 odaklanır.	 Çalışmada,	 Parçacık	 Sürü	
Optimizasyonu,	 Yapay	 Arı	 Kolonisi,	 Karınca	 Kolonisi	 Optimizasyonu	 ve	 Tabu	 Aramalı	 hibrit	
Parçacık	Sürü	Optimizasyonu	gibi	algoritmaların	başarısı	incelenmektedir.	Bu	algoritmalar,	gerçek	
dünyanın	 değişen	 ortamlarındaki	 lojistik	 senaryoların	 pratik	 uygulamalarında	 verimli	 rota	
planlaması	 için	 hayati	 öneme	 sahiptir.	 Bulgular	 Parçacık	 Sürü	 Optimizasyonu	 algoritmasının	
sınırlamalarını	ortaya	çıkarmış	ve	Tabu	Arama	ile	iyileştirme	yoluna	gidilmiştir.	Ortaya	çıkan	hibrit	
Tabu	Aramalı	hibrit	Parçacık	Sürü	Optimizasyonu,	Çok	Depolu	Araç	Rotalama	Problemi	'de	dikkate	
değer	 gelişmeler	 göstererek	 verimliliği	 ve	 güvenilirliğiyle	 öne	 çıkarken,	 Deterministik	 Olmayan	
Polinom	 Zamanında-zor	 kombinatoryal	 problemlerin	 çözümünde	 metasezgisel	 algoritmaların	
potansiyelinin	altını	çizmiştir. 
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1. Introduction		
	

The	Vehicle	Routing	Problem	(VRP),	an	NP-hard	problem	in	combinatorial	optimization	and	logistics,	
has	been	a	 significant	 focus	of	both	academic	and	practical	 interest	 since	G.	Dantzig	 and	 J.	Ramser	
introduced	 it	 in	 1959	 [1].	 VRP	 poses	 a	 challenge	 in	 efficiently	 allocating	 vehicular	 resources	 for	
transportation.	Research	has	shown	its	potential	to	help	organizations	optimize	their	transportation	
logistics,	 potentially	 reducing	 costs	 by	 5%	 to	 20%	 [2].	 This	 optimization	 is	 not	 only	 financially	
beneficial;	it	also	plays	a	crucial	role	in	the	strategic	management	of	human	and	material	resources,	
thereby	enhancing	overall	operational	efficiency.	The	significant	expansion	and	rising	popularity	of	
home	delivery	e-commerce	services	 such	as	Amazon,	Dalsey,	Hillblom,	and	Lynn	(DHL),	AliExpress	
have	spurred	researchers	to	intensively	investigate	this	area.		Due	to	a	variety	of	practical	constraints,	
VRP	has	evolved	into	several	specialized	forms.	These	include	the	Capacitated	Vehicle	Routing	Problem	
(CVRP),	Vehicle	Routing	Problem	with	Time	Windows	(VRPTW),	Multi-Depot	Vehicle	Routing	Problem	
(MDVRP),	Multi-Depot	Vehicle	Routing	Problem	with	Time	Windows	 (MDVRPTW),	Vehicle	Routing	
Problem	with	Pickup	and	Delivery	(VRPPD),	Split	Delivery	Vehicle	Routing	Problem	(SDVRP),	Periodic	
Vehicle	Routing	Problem	(PVRP),	and	the	Stochastic	Vehicle	Routing	Problem	(SVRP).	Each	of	these	
variants	has	unique	characteristics	that	set	it	apart	from	others,	with	complexity	increasing	as	more	
constraints	are	added.	This	study	focuses	on	the	MDVRP,	which	involves	managing	multiple	depots	and	
various	delivery	locations.	The	efficient	delivery	of	aid	during	natural	disasters	like	earthquakes	and	
floods,	 as	well	 as	 the	 rapid	 growth	of	 e-commerce,	 highlights	 the	 critical	 importance	of	 optimizing	
delivery	routes.	Effective	route	optimization	in	MDVRP	can	significantly	reduce	transportation	costs,	
improve	 delivery	 efficiency,	 and	 ensure	 timely	 assistance	 to	 those	 in	 need.	 However,	 existing	
algorithms,	while	 offering	 solutions,	 often	 face	 limitations	 in	 terms	of	 performance,	 reliability,	 and	
adaptability	 to	 real-world	 constraints.	This	 study	aims	 to	address	 these	 shortcomings	by	exploring	
innovative	approaches	to	tackle	the	complexity	of	the	MDVRP.	To	this	end,	the	paper	introduces	a	novel	
hybrid	 algorithm	 called	 Particle	 Swarm	 Optimization	 with	 Tabu	 Search	 (PSO-TS),	 combining	 the	
strengths	 of	 Particle	 Swarm	Optimization	 (PSO)	 and	 Tabu	 Search	 (TS).	 This	 combination	 balances	
global	 search	 capabilities	 with	 local	 refinement,	 aiming	 to	 overcome	 the	 limitations	 of	 traditional	
algorithms.	The	 study	presents	a	 comprehensive	 comparison	of	 four	metaheuristic	 algorithms:	Ant	
Colony	 Optimization	 (ACO),	 PSO,	 Artificial	 Bee	 Colony	 (ABC),	 and	 PSO-TS.	 These	 metaheuristic	
algorithms,	 recognized	 for	 addressing	 the	 complexities	of	MDVRP,	 are	 explored	 to	 identify	optimal	
routes.	The	experimental	results	demonstrate	the	superior	performance	and	reliability	of	the	PSO-TS	
approach,	 achieving	 lower	 average	 costs	 and	 reduced	 variability	 in	 solutions.	 These	 findings	
underscore	the	importance	of	exploring	innovative	hybrid	algorithms	to	tackle	complex	combinatorial	
optimization	problems,	particularly	 in	critical	contexts	 like	aid	distribution	during	natural	disasters	
and	the	fast-paced	world	of	e-commerce	delivery.	

	
Figure	1.	Block	Diagram	of	the	Research	Process	

This	 block	 diagram	 illustrates	 the	 methodology	 and	 key	 stages	 of	 the	 research,	 focusing	 on	 the	
development	and	evaluation	of	a	hybrid	PSO-TS	algorithm	for	optimizing	the	MDVRP.	To	effectively	
tackle	MDVRP,	initially	clustering	methods	is	employed	to	group	locations	by	their	nearest	depot.	This	
strategy	 forms	 the	 foundation	 for	applying	metaheuristic	algorithms	 to	ascertain	 the	most	efficient	
routing	 for	 each	 depot.	 In	 this	 research,	 K-means	 clustering,	 an	 unsupervised	 machine	 learning	
technique,	is	utilized	to	categorize	locations.	Subsequently,	the	selected	metaheuristic	algorithms	are	
deployed	to	determine	the	most	efficient	routes.	In	the	realm	of	solving	the	MDVRP,	various	innovative	
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algorithms	have	been	proposed,	each	bringing	unique	approaches	and	methodologies	to	the	forefront.	
Kicking	off	these	advancements,	Yongle	He,	Rong	Xie,	and	Yanjun	Shi	[3]	made	a	notable	contribution	
with	 their	 development	 of	 a	 Tabu	 Search	 Algorithm	 incorporating	 Variable	 Cluster	 Grouping.	 This	
approach	specifically	targets	MDVRP	by	intelligently	grouping	delivery	locations	into	clusters,	which	
are	 then	 optimized	 using	 a	 Tabu	 Search	 framework.	 This	 method	 significantly	 improves	 route	
efficiency	and	reduces	overall	transportation	costs.	In	the	middle	of	these	developments,	Matic	Pintarič	
and	 Sašo	 Karakatič	 [4]	 employed	 PSO	 to	 tackle	 MDVRP.	 Their	 approach	 leverages	 the	 collective	
behavior	observed	in	natural	swarms,	adapting	it	to	optimize	the	routes	in	a	multi-depot	context.	This	
method	stands	out	for	its	ability	to	efficiently	navigate	the	complex	search	space	of	MDVRP.	
	

Close	on	their	heels,	Nafiz	Mahmud	and	Md	Mokammel	Haque	[5]	applied	a	Genetic	Algorithm	(GA)	for	
MDVRP	 solutions.	Their	 approach	mimics	 the	process	of	 natural	 selection,	where	 the	 fittest	 routes	
survive	and	evolve	over	generations,	leading	to	increasingly	efficient	routing	solutions.	Per	Stodola	and	
Jan	Nohel	 [6]	 proposed	 an	 innovative	 solution	 using	 adaptive	 Ant	 Colony	Optimization	with	Node	
Clustering	 for	 MDVRP.	 This	 method	 combines	 the	 robust	 optimization	 techniques	 of	 ant	 colony	
behavior	with	a	strategic	clustering	of	nodes,	significantly	enhancing	route	optimization	and	efficiency.	
	

Toward	 the	 latter	 part	 of	 these	 advancements,	 Fernando	 Bernardes	 de	 Oliveira,	 Rasul	 Enayatifar,	
Hossein	 Javedani	 Sadaei,	 Frederico	 Gadelha	 Guimarães,	 and	 Jean-Yves	 Potvin	 developed	 [7]	 a	
cooperative	 coevolutionary	 algorithm	 for	MDVRP.	Their	 approach	 integrates	different	 evolutionary	
strategies	in	a	cooperative	framework,	enabling	more	effective	problem-solving	for	complex	routing	
scenarios.	 Lastly,	 the	 team	 comprising	 Zhaoquan	 Gu1	 Yan,	 Zhu	 Yuexuan,	Wang,	 Xiaojiang	 Du,	 and	
Mohsen	Guizani	[8]	made	a	significant	contribution	by	applying	an	Artificial	Bee	Colony	algorithm	to	
MDVRP.	 This	 approach	models	 the	 foraging	 behavior	 of	 honeybees,	 offering	 a	 robust	 and	 efficient	
method	for	solving	routing	problems	in	a	multi-depot	environment.	
	
Recent	research	has	further	expanded	the	complexity	and	application	of	MDVRP.	Arishi	and	Krishnan	
[25]			introduced	a	novel	multi-agent	deep	reinforcement	learning	(MADRL)	approach	for	solving	the	
MDVRP,	demonstrating	its	potential	for	dynamic	routing.	Soriano,	Gansterer,	and	Hartl	[26]	highlighted	
the	importance	of	profit	fairness	in	MDVRP	solutions,	proposing	a	model	and	heuristic	algorithm	for	
equitable	 profit	 distribution.	 Wirawan	 and	 Suharjito	 [27]	 showcased	 the	 benefits	 of	 integrating	
geographical	 information	systems	(GIS)	with	MDVRP	solutions	 for	optimizing	retail	deliveries.	Lim,	
Lee,	and	Singgih	[28]	explored	the	Multi-Depot	Split-Delivery	Vehicle	Routing	Problem	(MDSDVRP),	
where	deliveries	can	be	split	across	multiple	vehicles.	Finally,	Chen	et	al.	[29]	tackled	a	complex	variant	
of	the	MDVRP,	introducing	the	"Waitable	Time-Varying	Multi-Depot	Green	Vehicle	Routing	Problem"	
(WT-MDVRP)	and	proposing	a	genetic	algorithm	 for	solving	 it.	These	studies	 illustrate	 the	ongoing	
advancements	 in	MDVRP	research,	exploring	different	algorithmic	approaches,	 addressing	complex	
variants,	and	considering	real-world	constraints	like	time	windows,	profit	fairness,	and	environmental	
impact.	
	
Each	of	these	methods	represents	a	stride	forward	in	optimizing	solutions	for	the	MDVRP,	showcasing	
the	 diverse	 and	 innovative	 approaches	 researchers	 have	 employed	 to	 tackle	 this	 complex	 logistics	
challenge.	
	
2.	Method		
	
The	 research	 methodology	 is	 designed	 to	 address	 the	 complexities	 of	 the	 MDVRP	 efficiently.	
Recognizing	the	inherent	challenges	in	managing	multiple	depots	and	optimizing	routes,	the	proposed	
approach	 combines	 the	 strengths	 of	 unsupervised	 machine	 learning	 and	 advanced	 optimization	
techniques.	The	aim	of	this	study	is	to	minimize	the	total	travel	distance,	while	effectively	managing	
the	distribution	of	resources	from	multiple	depots.			
	
2.1.	K-Means	clustering			
	
The	 first	 phase	 involves	 grouping	 delivery	 locations	 into	 clusters	 based	 on	 their	 proximity	 to	 the	
nearest	 depots.	 The	 K-means	 clustering	 algorithm	 is	 employed	 for	 this	 purpose,	 a	method	widely	
recognized	 for	 its	 effectiveness	 in	unsupervised	machine	 learning.	The	objective	 in	 this	phase	 is	 to	
minimize	the	within-cluster	sum	of	squares,	which	essentially	reduces	the	variance	within	each	cluster.	
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Let:	

• 𝐷 = {𝑑!, 𝑑", … , 𝑑#} be	the	set	of	depots. 
• 𝐿 = {𝑙!, 𝑙", … , 𝑙$} be	the	set	of	delivery	locations. 
• 𝑘 be	the	number	of	clusters,	typically	equal	to	𝑚,	the	number	of	depots.	
• 𝐶 = {𝑐!, 𝑐", … , 𝑐%} be	the	set	of	cluster	centroids. 

 
The	 K-means	 clustering	 objective	 is	 to	 minimize	 the	 sum	 of	 squared	 distances	 between	 delivery	
locations	and	their	nearest	centroid.	The	centroids	are	initially	chosen	randomly	or	based	on	specific	
criteria.	 Each	delivery	 location	 𝑙& 	 is	 assign	 to	 cluster	𝑐' 	 such	 that	 the	Euclidean	distance	𝑑(𝑙& , 𝑐')	 is	
minimized	(Equation	1).	
 

𝑑0𝑙& , 𝑐'1 = 	3∑ (𝑙&( − 𝑐'()"$
()!         (1) 

 
where	𝑙& 	and	𝑐'(	are	the	coordinates	of	the	delivery	location	and	centroid	in	the	p-th,	dimension.	
After	assigning	all	locations,	centroid	of	the	clusters	is	updated	as	shown	in	Equation	2.		
 
𝑐' =

!
|+!|
∑ 𝑙&&	∈	+! 	          (2) 

 
where	𝑆' 	is	the	set	of	locations	in	cluster	𝑗.	
	
2.2.	Route	optimization		
	
Once	clusters	are	formed,	the	next	phase	is	route	optimization.	This	involves	solving	the	MDVRP	under	
a	set	of	constraints	to	minimize	the	total	distance	traveled	while	ensuring	efficient	resource	utilization.	
The	 Multi-Depot	 Vehicle	 Routing	 Problem	 (MDVRP)	 can	 be	 effectively	 modeled	 as	 a	 network	 to	
facilitate	analysis	and	solution	development.	In	this	context,	the	network	is	represented	by	a	graph	G	=	
(V,	E)	where	V	denotes	the	set	of	vertices	or	nodes,	and	E	represents	the	set	of	edges	or	paths.	
	 	

• 𝑉:		 	 The	 set	 of	 vertices	 in	 the	 network,	 denoted	 as	 V,	 includes	 all	 the	 depots	 and	 delivery	
locations.	 This	 can	 be	 represented	 as:	𝑉 = 𝐷 ∪ 𝐿	 here	𝐷 = {𝑑!, 𝑑", … , 𝑑#}	 	 is	 the	 set	 of	𝑚	
depots,	and	𝐿 = {𝑙!, 𝑙", … , 𝑙$}	is	the	set	of	𝑛	delivery	locations.		

• 𝐸:				The	 edges	 in	 the	 network,	 denoted	 as	𝐸,	 	 symbolize	 the	 feasible	 routes	 or	 connection	
between	vertices.	Defined	as:	𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗	 ∈ 𝑉	𝑎𝑛𝑑	𝑖 ≠ 𝑗}	

• 𝐶 = {𝐶!, 𝐶", … , 𝐶#}	 :	 Clustering	 formed	 post	 K-means	 clustering,	where	𝐶.	 is	 the	 cluster	 of	
locations	associated	with	depot	𝑑.	

• 𝐾.:	Set	of	vehicles	allocated	to	depot	𝑑,	with	|𝐾.|	being	the	number	of	vehicles.	

• 𝑄%:	Capacity	of	vehicle	k.	

• 𝑞&:	Demand	at	location	𝑖.	

• 𝑑&':	Distance	between	locations	𝑖	and	𝑗.	

		

The	decision	variables	are	as	defined	below,	
	
𝑥&'. = F1, 𝑡𝑎𝑘𝑒𝑛																						0, 𝑛𝑜𝑡	𝑡𝑎𝑘𝑒𝑛												 	 	 	 	 	 	 	 	 (1)	
	
where	binary	decision	variable,	1	if	a	vehicle	from	depot	𝑑	travels	from	location	𝑖	to	location	𝑗;		0	
otherwise.	
 
The	objective	function	is	defined	in	Equation	2,	
	
𝑀𝑖𝑛	∑ ∑ ∑ 𝑑&' ∙ 𝑥&'. 			&,'	∈0",&1'%	∈2".	∈3 		 	 	 	 	 	 	 (2)	
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where	several	constraints	are	considered	as	defined	in	defined	in	equations	3	to	5.	
	
• Vehicle	Capacity	Constraint	

∑ 𝑞& ∙ 𝑥&'. ≤ 𝑄%							∀𝑘	 ∈ 𝐾. ,			∀𝑑	 ∈ 𝐷			&∈0" 	 	 	 	 	 	 (3)	
	
The	delivery	capacity	of	each	vehicle	should	not	exceed	the	maximum	capacity.	
	
• Customer	Visit	Constraints	

∑ 𝑥&'. = 1					∀𝑙& 	 ∈ 𝐶. , ∀𝑑	 ∈ 𝐷							'	∈	0",'1& 			 	 	 	 	 	 (4)	
	
Only	one	vehicle	per	customer’s	location.	
	
• Depot	Start	and	End	Constraints	

∑ 𝑥.&% = 1,∑ 𝑥%'. = 1			∀𝑘 ∈ 𝐾. ,
∀𝑑 ∈ 𝐷						'∈0"&	∈0"	 	 	 	 	 	 	 	 (5)	

	
	
Figure	1	demonstrates	a	sample	MDVRP.	
	

	
Figure	2.	MDVR	example	

	
2.3.	Ant	colony	optimization		
	
ACO	is	a	robust	metaheuristic	algorithm	inspired	by	the	natural	foraging	behavior	of	ants.	Developed	
by	 M.	 Dorigo	 and	 colleagues	 [9],	 ACO	 has	 been	 widely	 recognized	 for	 its	 effectiveness	 in	 solving	
complex	optimization	problems,	particularly	in	logistics	and	routing.	The	algorithm's	foundations	lie	
in	mimicking	how	ants	find	the	shortest	path	between	their	colony	and	food	sources,	a	process	driven	
by	 pheromone	 trails	 and	 collaborative	 efforts.	 This	 approach	 is	 termed	 the	 "Artificial	 Ant	 Colony	
Algorithm",	a	name	chosen	to	differentiate	it	from	natural	ant	systems.	
	
In	the	context	of	the	MDVRP,	ACO	is	particularly	effective.	The	MDVRP,	akin	to	the	Travelling	Salesman	
Problem	(TSP)	but	with	added	complexity,	involves	determining	the	most	efficient	routes	for	a	fleet	of	
vehicles	operating	from	multiple	depots.	By	mimicking	the	ants'	method	of	iteratively	refining	their	
paths	based	on	pheromone	trails,	ACO	allows	for	a	dynamic	and	adaptive	search	for	the	most	efficient	
routing	solutions	in	MDVRP	scenarios.	on	paths	they	traverse.	
	
Key	Components	of	ACO	
	

• Ant	Agents:	Each	ant	 in	the	algorithm	represents	a	potential	solution,	 i.e.,	a	sequence	of	
routes	for	the	vehicles.	

• Pheromone	Trails(𝜏):	Ants	lay	down	pheromone	trails	0𝜏&'1		on	paths	they	traverse.	These	
trails,	which	decay	over	time,	guide	subsequent	ants’	decisions:	𝜏&' ← (1 − 𝑝) ∙ 𝜏&' +	Δ4#! 	
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where	 𝑝	 is	 the	 pheromone	 evaporation	 rate,	 and	 Δ4#! 	 is	 the	 amount	 of	 pheromone	
deposited.	

• Heuristic	 information	 (𝜂):	 This	 is	 typically	 the	 inverse	 of	 the	 distance	 (𝑑&')	 between	
location	two	locations	𝑖	and	𝑗	:	𝜂&' =	

!
.#!
.	It	represents	the	desirability	of	a	route.		

	
Table	 1	 details	 the	 key	 steps	 and	mathematical	 elements	 of	 the	ACO	process	 in	 the	 context	 of	 the	
clustered	MDVRP.	
	

Table	1.	ACO	for	MDVRP	process	
Stage	 Description	 Formula	
Preprocessing	using	
K-means	Clustering	

Group	delivery	locations	into	clusters	based	on	
proximity	to	the	nearest	depot,	forming	clusters	𝐶!	for	
each	depot	𝑑.	

N/A	

Initialization	 Set	initial	pheromone	levels	on	paths	within	clusters.		 Pheromone	𝜏"#	levels	initialized	
to	a	small	positive	value.	
	

Route	Construction	 Ants	build	routes	within	each	cluster		𝐶! ,	starting	from	
the	associated	depot.	Selection	of	the	next	location	
based	on	pheromone	and	heuristic	information.	

Probability	 𝑝"#$ 	 of	 choosing	 the	
next	 location	 𝑗	 from	 𝑖	 by	 ant	 𝑘,	

𝑝"#$ = 	
(&!"
# )∙()!"

$)

∑(&!"
# ∙)!"

$)
	

Local	Pheromone	
Update	

Adjust	pheromone	levels	on	individual	paths	post	visit	
by	ant,	promoting	exploration.	

Local	update	rule:		
𝜏"# 	← (1 − 𝜙) ∙ 	 𝜏"# + 	𝜙 ∙ 𝜏+	

Global	Pheromone	
Update	

After	all	ants’	complete	routes,	globally	update	
pheromones	on	successful	paths.	Incorporate	
pheromone	evaporation	to	avoid	premature	
convergence.	

Global	update	rule:	
	𝜏"# 	← (1 − 𝜙) ∙ 	 𝜏"# +		Δ&!" 	
	

Iterative	Optimization	
and	Convergence	

Repeat	the	process	for	multiple	iterations	until	a	
stopping	criterion	is	met	(fixed	number	of	iterations)		

N/A	

	
2.4.	Artificial	bee	colony	
	
The	ABC	algorithm,	initially	proposed	by	Derviş	Karaboğa	in	2005	through	his	pioneering	work	titled	
"An	 Idea	Based	on	Honeybee	 Swarm	 for	Numerical	Optimization"	 (Technical	Report-TR06,	 Erciyes	
University),	is	a	bio-inspired	optimization	strategy	that	has	gained	widespread	recognition	in	various	
scientific	 and	 engineering	 fields	 [10].	 This	 algorithm,	 which	 draws	 inspiration	 from	 the	 foraging	
patterns	of	honeybees,	 is	a	stochastic,	population-based	method	that	has	been	effectively	applied	in	
diverse	areas	[11].	The	structure	of	the	ABC	algorithm	includes	three	types	of	bees:	employed	bees,	
onlookers,	and	scouts.	Each	group	plays	a	specific	role,	collaboratively	contributing	to	the	search	for	
optimal	solutions	[12].	This	unique	collaborative	mechanism	enables	the	ABC	algorithm	to	maintain	a	
balance	between	exploration	and	exploitation	of	solutions	[13].	Notably,	the	ABC	algorithm	has	been	
utilized	extensively	in	numerical	optimization	and	engineering.	It	has	also	been	applied	in	various	other	
domains,	 such	 as	 cancer	 classification	 [14],	 SAR	 image	 segmentation	 [15],	 and	 the	 estimation	 of	
induction	motor	parameters	[16].	Its	ability	to	robustly	optimize	numerical	problems	has	been	well-
documented	[17].	To	enhance	its	capabilities,	various	modifications	have	been	introduced,	including	
search	 space	 division	 and	 a	 disruptive	 selection	 strategy	 [18].	 Moreover,	 to	 address	 specific	
optimization	 challenges,	 several	 variants	 and	 hybrid	 versions	 of	 the	 ABC	 algorithm	 have	 been	
developed.	These	include	the	enhanced	memetic	ABC,	a	global	ABC	variant	that	incorporates	crossover	
and	 Tabu	 Search	 techniques,	 and	 a	 hybrid	 ABC	 integrating	 variable	 neighborhood	 search	 with	 a	
memory	mechanism.	Such	analyses	underscore	the	significance	and	efficiency	of	ABC	in	the	realm	of	
optimization	algorithms,	echoing	its	foundational	roots	laid	by	Karaboğa.	For	the	MDVRP	problem,	ABC	
is	 applied	 to	 a	 single	 VRP,	 utilizing	 K-means	 clustering	 to	 assign	 specific	 locations	 to	 each	 depot.	
Algorithm	1	shows	the	process	of	ACO	for	MDVRP.	
	
	
	
	 Algorithm	1:	Artificial	Bee	Colony	for	MDVRP	

1	
Depot	Clustering	



7	

 

 

E-ISSN:	2651-5350	©	2024	Parantez	T	 

Daouda	&	Atila	

2	
	 Apply	k-means	clustering	to	assign	location	to	the	nearest	depot(s).	

3	
	 Output:	Clustered	groups	of	locations	for	each	depot.	

4	
Initialize	Solutions	

5	
		 For	each	depot,	generate	initial	solutions	(food	source)	and	calculate	

their	fitness.	

6	
	 Set	iteration	counter	𝒊	 = 	𝟎	

7	
Iteration	Optimization	

8	
	 While	i	<	Max_iteration:	

9	
	 	 For	each	depot:	

10	
	 	 	 ABC	for	single	VRP	

11	
	 	 	 	 Generate	initial	solutions	as	food	sources	for	the	depot	and	

calculate	fitness.	

12	
	 	 	 	 Assign	employed	bees	to	each	food	source.	

13	
	 	 	 	 Employed	bees	perform	local	search	to	improve	their	

assigned	solutions.	

14	
	 	 	 	 Follower	and	scout	bees	explore	new	solutions.	

15	
	 	 	 	 Record	the	best	()	solution	for	each	depot.	

16	
	 	 	 Depot	Combination		

17	
	 	 	 	 Calculate	additional	cost	of	combining	best	solutions	from	

	

	
	 	 	 	 different	depots.	

23	
	 	 Increment	iteration	counter	(i←i	+	1)	

24	
Repeat	Until	Convergence		

25	
	 Continue	the	iterative	process	until	the	maximum	number	of	iterations	is	

reached.	
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Let's	 consider	 the	 following	 scenario	 of	 the	 Multi-Depot	 Vehicle	 Routing	 Problem	 (MDVRP),	
characterized	by	two	depots,	D	=	{𝑑!, 𝑑"},	and	a	set	of	locations,	L	=	{𝑙!, 𝑙", 𝑙5, 𝑙6, 𝑙7, 𝑙8, 𝑙9, 𝑙:, 𝑙;	}.	The	initial	
step	involves	assigning	each	location	to	the	nearest	depot.	This	process	is	demonstrated	in	Figure	2,	
where	 the	 locations	 {𝑙!, 𝑙", 𝑙5, 𝑙:, 𝑙8	 }	 are	 grouped	 into	 a	 cluster	 with	 depot	 d1,	 while	 the	 locations	
{𝑙9, 𝑙;, 𝑙7, 𝑙6	}	form	a	cluster	with	depot	d2.	

	
Figure	3.	MDVRP	with	clusters	

	
The	solutions,	referred	to	as	food	sources,	must	then	be	evaluated.	The	assessment	of	each	solution	is	
facilitated	by	calculating	its	fitness,	which	can	be	defined	as	given	in	Equation	6:	
	
𝐹(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) = 	 !

!<=>?@A3&B?@$CD(+>AF?&>$)
	 	 	 	 	 	 	 (6)	

	
where	the	TotalDistance	represents	the	sum	of	the	distances	of	all	routes	in	the	solution.		
	
During	the	phase	for	employed	bees,	these	bees	will	seek	out	new	potential	food	sources	in	the	vicinity	
of	their	current	one.	Therefore,	a	set	of	local	search	strategies	is	established	for	the	"employed	bees"	to	
identify	superior	solutions.	Within	the	context	of	local	search	strategies	used	by	employed	bees	in	the	
Artificial	Bee	Colony	(ABC)	algorithm,	three	common	techniques	including	random	insert,	swap,	and	
inverse	are	explained	as	follows:	
	
• Random	insert	

	
This	method	involves	randomly	selecting	a	location	from	a	route	and	inserting	it	into	another	position	
within	the	same	route	(Figure	4).	

	

	
Figure	4.	Insertion	

	
• Random	Swap	
	
The	swap	method	selects	a	set	of	locations	on	a	route	and	swaps	their	positions	(Figure	5).	
		

	
Figure	5.	Swap	
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• Random	Inverse	
	
This	method	takes	a	sequence	of	locations	within	a	route	and	inverts	their	order	(Figure	6).	
	

	
Figure	6.	Inverse	

	
2.5.	Particle	Swarm	Optimization	
	
PSO	is	a	population-based	stochastic	optimization	algorithm,	inspired	by	the	social	behavior	of	bird	
flocking	or	fish	schooling.	It	was	first	introduced	by	Dr.	Eberhart	and	Dr.	Kennedy	in	1995	[19].	PSO	is	
a	metaheuristic	 algorithm	 that	 has	 been	widely	 applied	 to	 solve	 various	 optimization	 problems	 in	
engineering,	 computer	 science,	 economics,	 and	 other	 fields.	 	 The	 basic	 concept	 of	 PSO	 involves	
simulating	the	social	behavior	of	a	flock	of	birds	searching	for	food.		
	
In	 PSO,	 a	 population	 of	 potential	 solutions,	 called	 particles,	 move	 through	 the	 search	 space.	 Each	
particle	 adjusts	 its	 position	 based	 on	 its	 own	 experience	 and	 the	 experience	 of	 its	 neighbors.	 The	
movement	of	particles	is	guided	by	their	own	best-known	position	and	the	best-known	position	of	the	
entire	swarm.	This	collective	behavior	enables	the	particles	to	converge	toward	the	optimal	solution	
over	iterations.			
	
One	of	the	key	components	of	PSO	is	the	fitness	function,	which	evaluates	the	quality	of	a	potential	
solution.	 The	 particles	 adjust	 their	 positions	 based	 on	 the	 value	 of	 the	 fitness	 function,	 aiming	 to	
minimize	 or	maximize	 it,	 depending	 on	 the	 nature	 of	 the	 optimization	 problem.	 	 PSO	 has	 several	
parameters	that	need	to	be	carefully	tuned,	such	as	the	cognitive	and	social	parameters,	inertia	weight,	
and	 the	 size	 of	 the	 swarm.	These	parameters	 significantly	 influence	 the	 convergence	behavior	 and	
performance	of	the	algorithm.	 	Numerous	variants	and	modifications	of	PSO	have	been	proposed	to	
enhance	its	performance	and	address	specific	challenges.	These	include	adaptive	PSO,	multi-objective	
PSO,	hybrid	PSO,	and	constrained	optimization	PSO,	among	others.		
	
Like	the	previous	algorithms,	PSO	is	applied	for	a	single	VRP	because	K-means	clustering	is	used,	and	
each	depot	has	its	own	locations.	Algorithm	2	shows	the	process.	
	

Algorithm	2:	Particle	Swarm	Optimization	for	MDVRP	
1	 Depot	Clustering	
2	 	 Apply	k-means	clustering	to	assign	location	to	the	nearest	depot(s).	
3	 	 Output:	Clustered	groups	of	locations	for	each	depot.	
4	 PSO	for	each	cluster:	
5	 	 Initialization	
6	 	 	 Number	of	Particles:	Set	N,	the	number	of	particles	in	the	swarm.	
7	
	
8	

	 	 Particles	Positions	and	Velocities:	Randomly	initialize	the	
position	𝑿𝒊	and	velocity	𝑽𝒊	for	each	particle	i.	
Best	known	Positions:	Initialize	the	personal	best	position	𝑷𝒃𝒆𝒔𝒕		
for	each	particle	𝑖	and	global	best	position	𝑮𝒃𝒆𝒔𝒕	across	all	particles.	

9	 	 For	each	iteration:	
10	 	 	 For	each	particle:	
11	 	 	 	 Fitness	Calculation:		Calculate	the	fitness	value	𝐹& 	of	the	

particle’s	current	position(solution).	
12	 	 	 	 Update	Personal	Best:	If	𝐹& 	is	better	than	the	fitness	of	𝑷𝒃𝒆𝒔𝒕		,	

then	set	𝑷	𝒃𝒆𝒔𝒕 =		𝑿𝒊			
13	 	 	 Update	Global	best:	Find	the	particle	with	the	best	fitness	in	the	

current	iteration	and	update	𝑮𝒃𝒆𝒔𝒕	if	it’s	better	than	the	current	
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𝑮𝒃𝒆𝒔𝒕	
14	 	 	 Update	Velocity:	

𝑉& = 𝜔 ∙ 𝑉& + 𝑐! ∙ 𝑟! ∙ (𝑃MDB? − 𝑋&) + 𝑐" ∙ 𝑟" ∙ (𝐺MDB? − 𝑋&)	
Where	𝜔	is	the	inertia	weight,	𝑐!	and	𝑐"	are	cognitive	and	social	
coefficients	respectively,	and	𝑟!, 𝑟"	are	random	numbers	in	[0,1]	

15	 	 	 Position	Update:	𝑋& = 𝑋& + 𝑉&	
16	 	 Record	the	solution	(route	and	cost	for	the	cluster)	
17	 	 Combine	solutions	and	calculate	total	cost	
	 	 	 Aggregate	the	solutions	from	all	clusters	
	 	 	 Calculate	the	total	cost	(sum	of	costs	from	all	clusters	solutions)	
18	 Output:	Return	the	combined	routing	solution	and	the	total	cost.	

	
	
2.6.	Proposed	Hybrid	PSO	
	
Upon	applying	the	three	algorithms,	it	was	noted	that	PSO	yielded	the	lowest	cost.	To	further	optimize	
this,	 Tabu	 Search	 was	 integrated,	 with	 details	 available	 in	 the	 experimental	 results	 section.	 Tabu	
Search,	recognized	for	its	effectiveness	in	diverse	optimization	challenges,	has	shown	success	in	areas	
like	scheduling,	vehicle	routing,	and	combinatorial	optimization.	It	has	also	been	valuable	in	solving	
classical	 problems	 like	 the	 traveling	 salesman	 [1].	 Furthermore,	 Tabu	 Search	 has	 proven	 effective	
compared	 to	 existing	 algorithms	 for	 MaxMeanDP	 and	 the	 vehicle	 routing	 problem	 [2], [3].	 The	
algorithm's	 iterative	 local	search	technique	starts	 from	an	 initial	solution	and	explores	the	solution	
space	 to	 find	optimal	 solutions	 	 [4].	Additionally,	Tabu	Search	has	been	described	as	a	higher-level	
heuristic,	guiding	other	methods	to	escape	local	optima	[1].	
	
The	PSO-TS	approach	for	solving	the	Multi-Depot	Vehicle	Routing	Problem	(MDVRP)	is	an	innovative	
hybrid	algorithm	that	combines	the	strengths	of	Particle	Swarm	Optimization	(PSO)	and	Tabu	Search	
(TS).	This	method	first	utilizes	PSO	to	explore	a	broad	solution	space	efficiently	and	then	applies	the	
TS	 technique	 to	 refine	 these	 solutions.	 This	 combination	 aims	 to	 balance	 global	 and	 local	 search	
capabilities,	effectively	addressing	the	complexities	of	MDVRP	to	find	optimized	routing	solutions.	The	
proposed	Algorithm	3	uses	operators	like	1-swap,	1-insert,	and	2-opt	to	create	neighboring	solutions.	
	
	

Algorithm	3:	PSO-	TS	for	MDVRP	
1	 PSO	
2	 	 Refine	the	returning	𝑮𝒃𝒆𝒔𝒕	PSO	solution	
3	 TS	
4	 	 For	the	current	set	of	routes	
5	 	 	 Generate	Initial	Solution	
6	 	 	 Neighborhood	Structure	
7	 	 	 	 Use	operators	like	1-swap,	1-insert,	and	2-opt	to	create	

neighboring	solution.	
8	 	 	 Tabu	List	Management	
9	 	 	 	 Maintain	a	Tabu	List	to	record	history	and	avoid	local	optima.	
10	 	 	 	 Prohibit	certain	moves	based	on	the	tabu	list	

	
	
3.	Experimental	Results	and	Discussion	
	
All	experiments	were	conducted	on	a	MAC	OS	operating	system	with	an	Intel	Core	i7	processor.	All	
algorithms	 were	 implemented	 using	 Python	 3.1,	 utilizing	 Jupyter	 Notebook	 and	 Spyder	 as	 the	
Integrated	Development	Environments	(IDEs).	The	problem	data,	sourced	from	a	repository	dedicated	
to	MDVRP	problem	datasets	 [5],	 comprises	a	 text	 file	with	50	 locations	and	4	depots.	Each	 location	
includes	coordinates	(x,	y),	vehicle	capacity	(80),	the	number	of	vehicles	(maximum	4	per	depot),	and	
demand	per	location.	
	
To	better	understand	the	data,	a	program	was	developed	to	convert	the	text	file	into	a	JSON	format	
(Figure	7),	facilitating	easier	data	utilization.		
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Figure	7.	Converting	txt	file	to	JSON	
	
Initially,	K-means	clustering	was	applied	to	group	locations	by	their	nearest	depot.	Figure	8	shows	the	
results	of	K-means	clustering.	

	
Figure	8.	K-Means	clustering 

 

After	9	iterations,	the	locations	have	been	grouped	by	the	nearest	depots	as	shown	in	Table	2.	Figure	9	
demonstrates	how	ABC	algorithm	behaves.		

 
Table	2.	Clusters	

C	 Depots	 Locations	

𝑐,	 51	 4,	12,	13,	15,	17,	18,	19,	37,	40,	41,	42,	44,	45,	47	

𝑐-	 52	 1,	6,	7,	8,	14,	23,	24,	25,	26,	27,	32,	43,	46,	48	

𝑐.	 53	 5,	9,	10,	11,	16,	21,	30,	33,	34,	38,	39,	49,	50	

𝑐/		 54	 2,	3,	20,	22,	28,	29,	31,	35,	36	

 



12	

 

 

E-ISSN:	2651-5350	©	2024	Parantez	T	 

Daouda	&	Atila	

 
Figure	9.	ABC	for	MDVRP	

	
Table	3	shows	each	route	along	with	the	corresponding	locations.	After	the	algorithm,	it	was	observed	
that	each	cluster	attempted	to	achieve	the	optimum	cost	while	adhering	to	the	constraints	previously	
outlined	in	the	network's	definition.	The	ABC	algorithm	was	chosen	to	demonstrate	how	the	total	cost	
was	computed	from	clusters.	
 

Table	3.	Clusters	with	routes	

Cluster	 Routes	 ABC	Cost	

C1	

1	 51 – 45 – 17 – 47 – 51 
164.14	2	 51 – 15 – 4 – 19 – 13 – 44 – 42– 51 

3	 51 – 12 – 40 – 37 – 18 – 41 – 51 

C2	

1	 52 – 43 – 27 – 48 – 7– 46 – 26 – 52 
198.39	2	 52 – 8 – 24 – 52 

3	 52 – 25 – 6 – 32 – 23 – 14 – 1– 52 

C3	

1	 53 – 9 – 30 – 38 – 21– 53 
148.09	2	 53 – 33 – 16 – 5 – 49 – 11 – 53 

3	 53 – 34 – 10– 50 – 39 – 53 

C4	
1	 54 – 3 – 2 – 35 – 31 – 54 

113.55	
2	 54 – 22 – 29– 30 – 36 – 28 – 54 

Total	Cost	 624.17	

 

All	algorithms	were	run	30	times.	For	comparison	of	different	algorithms	under	identical	conditions,	
each	algorithm	was	run	with	the	same	number	of	function	evaluations,	set	as	100.	The	initial	best	state	
of	each	algorithm	varies,	as	it	must	adhere	to	defined	constraints	and	is	determined	randomly	based	on	
each	algorithm's	ability	to	approach	the	optimal	solution.	Figure	10	illustrates	the	convergence	curves	
of	all	algorithms	for	one	run	out	of	30.	It	was	observed	that,	after	a	certain	number	of	iterations,	the	cost	
for	each	algorithm	stabilized	and	became	constant.	Furthermore,	the	figure	demonstrates	that	the	cost	
for	 PSO-TS	 starts	 at	 the	 same	 point	 as	 that	 for	 PSO,	 indicating	 an	 initial	 similarity	 in	 performance	
between	these	two	approaches.	
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Figure	10.	Convergence	graph	

 

Figure	11-13	shows	the	total	costs	over	different	runs	for	all	algorithms.	After	30	runs,	the	minimum	
costs	obtained	were	609.27	for	ABC,	613.00	for	PSO	and	619.00	for	ACO.		

 
Figure	11.	ABC	for	MDVRP	

 

 
Figure	12.	PSO	for	MDVRP	
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Figure	13.	ACO	for	MDVRP	

 

Upon	recognizing	that	the	ABC	algorithm	yielded	the	lowest	cost,	Tabu	Search	was	used	to	improve	the	
quality	 of	 the	 best	 solution	 obtained	 by	 PSO.	 The	 hybrid	 PSO-TS	 algorithm	 successfully	 reached	 an	
optimum	cost	of	608.00	(Figure	14).	

 
Figure	14.	PSO-TS	for	MDVRP	

In	evaluating	the	performance	of	algorithms	discussed	in	this	study,	a	suite	of	statistical	metrics	was	
leveraged,	notably	the	mean	and	standard	deviation	(std)	and	quartile	values	(25%,	50%,	75%).	The	
mean	was	calculated	as	the	sum	of	all	costs	divided	by	the	number	of	runs.	The	standard	deviation	is	
computed	as	the	square	root	of	the	average	squared	differences	from	the	mean	quantifies	the	spread	
or	variability	of	the	cost	values	around	the	mean.	The	quartile	values	further	dissect	the	obtained	costs	
into	four	equal	parts:	the	25%	quartile	(first	quartile)	denotes	the	median	of	the	costs’s	lower	half,	the	
50%	quartile	(median)	effectively	splits	the	costs,	and	the	75%	quartile	(third	quartile)	represents	the	
median	 of	 the	 costs’s	 upper	 half.	 These	 measures	 provide	 a	 comprehensive	 snapshot	 of	 costs	
distribution.	Together,	they	are	critical	for	a	thorough	assessment	of	algorithm	performance	offering	a	
nuanced	understanding	of	an	algorithm's	operational	efficiency	and	robustness.	
	
	
	
	
	
	
	
	

Table	4.	Performance	comparison	of	the	algorithms	for	MDVRP	
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Algorithm	Performance	comparison	for	MDVRP	
PSO	 ACO	 ABC	 PSO-TS	

Mean	 624.16	 625.07	 636.17	 612.53	

Min	 613.00	 619.00	 609.26	 608.00	

25%	 620.25	 623.15	 623.67	 610.00	

50%	 624.00	 625.68	 634.95	 611.50	

75%	 626.75	 626.96	 649.67	 613	

Max	 639.00	 632.28	 684.28	 627.00	

Std	 6.70	 3.07	 17.70	 3.93	

	
Table	4's	comparison	of	algorithms	for	solving	the	Multiple	Depot	Vehicle	Routing	Problem	(MDVRP)	
reveals	how	Particle	Swarm	Optimization	(PSO),	Ant	Colony	Optimization	(ACO),	Artificial	Bee	Colony	
(ABC),	and	PSO	with	Tabu	Search	(PSO-TS)	perform	over	30	runs.	PSO-TS	shines	as	the	top	choice,	
delivering	 the	 lowest	 average	 cost	 of	 612.53	 and	 showing	 great	 reliability	 with	 a	 small	 standard	
deviation	of	3.93.	This	means	PSO-TS	can	consistently	 find	good	solutions	without	much	change	 in	
performance.	 It	 also	 reached	 the	 lowest	 cost	of	608.00,	proving	 its	 effectiveness	 in	 solving	MDVRP	
problems.		PSO	also	does	well,	with	an	average	cost	of	624.16	and	some	variability,	shown	by	a	standard	
deviation	of	6.70.	Its	lowest	cost	was	613.00,	showing	it	can	find	low-cost	solutions	but	not	as	reliably	
as	PSO-TS.	ACO's	average	cost	is	a	bit	higher	than	PSO's	at	625.07,	but	it's	the	most	consistent	of	the	
traditional	algorithms,	with	the	least	variability	at	3.07.	However,	its	lowest	cost	is	619.00,	suggesting	
it	might	struggle	to	find	the	lowest	costs	possible.	ABC,	on	the	other	hand,	has	the	most	variation	at	
17.70	and	the	highest	average	cost	of	636.17,	indicating	it	might	not	always	offer	efficient	solutions.	
But	its	minimum	cost	of	609.26	is	competitive,	showing	it	sometimes	finds	low-cost	solutions	despite	
its	general	inconsistency.	Looking	at	the	quartile	values,	PSO-TS	consistently	offers	lower	costs	as	613,	
especially	 noticeable	 at	 its	 75th	 percentile,	 showing	 uniform	 high	 performance.	 ABC's wide	 range,	
particularly	its	75th	percentile	up	to	649.67,	indicates	it	often	ends	up	with	higher-cost	solutions,	even	
though	 it	 can	occasionally	 find	 low-cost	ones.	 In	summary,	PSO-TS	stands	out	 for	 its	efficiency	and	
reliability	 in	MDVRP,	making	 it	a	preferable	option.	While	PSO	and	ACO	provide	solid,	 less	variable	
solutions,	ABC's	variability	suggests	it's	more	of	a	gamble,	capable	of	finding	low-cost	solutions	but	also	
risking	higher-cost	outcomes.	
	
This	study	contributes	 to	 the	growing	body	of	research	on	solving	 the	Multi-Depot	Vehicle	Routing	
Problem	(MDVRP)	using	metaheuristic	algorithms.	Our	findings	highlight	the	efficiency	and	reliability	
of	the	hybrid	PSO-TS	approach,	offering	a	promising	solution	compared	to	traditional	algorithms	like	
ACO,	PSO,	and	ABC,	particularly	for	optimizing	aid	delivery	during	natural	disasters	and	e-commerce	
deliveries.	 However,	 understanding	 how	 our	 study	 fits	 within	 the	 broader	 landscape	 of	 MDVRP	
research	 is	 crucial.	This	discussion	delves	 into	 related	works,	 emphasizing	 the	key	 similarities	 and	
differences	between	our	approach	and	existing	methods.	
While	various	algorithms	have	been	proposed	to	solve	MDVRP,	a	few	stand	out	in	comparison	to	our	
study:	
	

• Tabu	 Search	 with	 Variable	 Cluster	 Grouping	 [3]:	 This	 study,	 similar	 to	 ours,	 incorporates	
clustering,	 but	 it	 utilizes	 a	 Tabu	 Search	 algorithm.	 Their	 focus	 is	 on	 dynamically	 grouping	
delivery	 locations,	while	 our	 approach	 utilizes	 K-Means	 clustering	 upfront	 and	 focuses	 on	
improving	 PSO	 performance	 with	 TS.	 This	 dynamic	 clustering	 strategy	 may	 be	 more	
advantageous	 in	 situations	 where	 locations	 are	 constantly	 changing	 or	 evolving,	 but	 our	
approach	offers	a	simpler	and	potentially	faster	solution	for	static	scenarios.	

• Particle	Swarm	Optimization	[4]:	This	work	also	uses	PSO,	but	without	the	integration	of	Tabu	
Search.	While	our	study	demonstrates	the	improvement	achieved	by	combining	PSO	with	TS,	
their	work	focuses	on	the	PSO	algorithm's	inherent	ability	to	solve	MDVRP.	This	comparison	
highlights	the	strengths	of	integrating	a	local	search	technique,	like	TS,	to	refine	the	solutions	
obtained	by	PSO.	

• Genetic	Algorithm	[5]:	This	study	applies	a	Genetic	Algorithm	to	MDVRP,	relying	on	natural	
selection	principles	to	optimize	routes.	While	GA	is	another	effective	metaheuristic	approach,	
our	study	focuses	on	PSO	and	explores	the	benefits	of	hybridization	with	Tabu	Search.	This	
comparison	 emphasizes	 the	 diverse	 range	 of	 metaheuristic	 approaches	 for	 MDVRP	 and	
highlights	the	potential	of	hybridizing	techniques	for	enhanced	performance.	
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• Adaptive	Ant	Colony	Optimization	[6]:	This	work	combines	ACO	with	node	clustering,	offering	
a	robust	approach.	While	their	focus	is	on	adapting	ACO	for	MDVRP,	our	research	focuses	on	
the	potential	of	PSO	and	 the	enhancements	achievable	 through	hybridization	with	TS.	This	
comparison	 demonstrates	 the	 versatility	 of	 ACO	 and	 its	 adaptability	 to	 different	 problem	
scenarios.	

• Cooperative	 Coevolutionary	 Algorithm	 [7]:	 This	 method	 uses	 a	 cooperative	 evolutionary	
framework	 for	MDVRP.	While	 their	 approach	 emphasizes	 cooperation	 among	 evolutionary	
strategies,	 our	 study	 focuses	 on	 the	 combination	 of	 PSO	 and	 Tabu	 Search	 for	 improved	
optimization.	This	comparison	highlights	the	advantages	of	different	evolutionary	strategies	
and	the	potential	for	combining	them	to	tackle	complex	optimization	problems.	

• Artificial	Bee	Colony	Algorithm	[8]:	This	study	uses	ABC	to	solve	MDVRP,	drawing	inspiration	
from	the	foraging	behavior	of	honeybees.	Although	ABC	offers	a	robust	optimization	approach,	
our	study	focuses	on	PSO	and	the	benefits	of	integrating	TS.	This	comparison	underlines	the	
variety	of	bio-inspired	optimization	algorithms	available	and	emphasizes	the	ongoing	research	
exploring	their	potential	in	solving	complex	problems	like	MDVRP.	

While	 the	 proposed	 PSO-TS	 algorithm	 demonstrates	 promising	 results	 for	 solving	 the	MDVRP,	 it's	
important	to	acknowledge	certain	limitations	of	this	study:	

• Dataset	Scope:	The	study	was	conducted	on	a	specific	dataset	with	a	limited	number	of	depots	
and	delivery	points.	The	performance	of	the	algorithm	may	differ	when	applied	to	larger	and	
more	 complex	 real-world	 datasets	 with	 a	 greater	 number	 of	 locations	 and	more	 intricate	
constraints.	

• Simplified	Scenario:	The	model	currently	does	not	account	for	real-world	complexities	such	as	
traffic	conditions,	varying	road	types,	or	potential	disruptions.	Including	these	factors	in	future	
iterations	would	enhance	 the	algorithm's	practical	applicability	and	make	 the	results	more	
relevant	to	real-world	scenarios.	

• Algorithm	Optimization:	The	PSO-TS	algorithm	was	optimized	for	the	specific	dataset	used	in	
this	 study.	 Further	 research	 is	 needed	 to	 assess	 its	 performance	 and	potentially	 adapt	 the	
algorithm's	parameters	for	other	datasets	or	scenarios.	

• Focus	on	Cost	Optimization:	While	cost	is	a	crucial	factor	in	MDVRP,	the	algorithm's	primary	
focus	is	on	minimizing	the	total	travel	distance.	Future	research	could	explore	incorporating	
additional	objectives	such	as	minimizing	vehicle	usage,	reducing	delivery	time,	or	prioritizing	
routes	based	on	urgency	or	sensitivity.	
	

4.	Conclusion	
	
In	this	study,	three	distinct	algorithms	ACO,	PSO,	and	ABC	were	analyzed	to	tackle	the	complexities	of	
the	Multi-Depot	Vehicle	Routing	Problem	(MDVRP).	The	findings	revealed	the	limitations	of	the	PSO	
algorithm	and	prompted	development	with	Tabu	Search.	The	resulting	hybrid,	PSO-TS,	demonstrated	
remarkable	improvements,	underscoring	the	potential	of	metaheuristic	algorithms	in	solving	NP-hard	
combinatorial	problems.	Future	research	should	focus	on	incorporating	real-world	factors,	including	
traffic	dynamics,	fuel	considerations,	and	additional	logistical	constraints,	into	the	MDVRP	model.	This	
paper	 adds	 to	 the	 existing	 body	 of	 literature	 by	 showcasing	 the	 applicability	 of	 these	 advanced	
algorithms	 in	 progressively	 challenging	 scenarios,	 paving	 the	 way	 for	 more	 adaptive,	 robust,	 and	
efficient	solutions	in	the	field	of	complex	problem-solving.	
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