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ABSTRACT  
 
As cyber threats evolve in complexity and frequency, endpoint security has transformed from 
simple antivirus solutions into comprehensive frameworks incorporating artificial intelligence, 
real-time behavioral analytics, and cloud-based telemetry integration. This paper presents a 
systematic review of the technological evolution and present challenges of endpoint security, 
covering the transition from signature-based antivirus software to modern systems such as 
Endpoint Detection and Response (EDR), Extended Detection and Response (XDR), Managed 
Detection and Response (MDR), and Network Detection and Response (NDR). Through a 
longitudinal timeline and thematic synthesis of recent developments, we analyze how endpoint 
protection technologies have adapted to address growing threats such as zero-day exploits, 
ransomware-as-a-service, and Internet of Things (IoT) vulnerabilities. Our findings reveal that 
while next-generation endpoint security solutions offer robust capabilities, they remain 
constrained by implementation complexity, data privacy regulations, and device interoperability. 
This study distinctively contributes to the literature by presenting a conceptual framework for 
integrating Zero Trust and Federated Learning principles into future endpoint defense strategies 
and by identifying critical, previously under-detailed research challenges associated with this 
integration. The paper concludes by discussing the importance of these integrations for creating 
scalable, privacy-preserving, and globally coordinated endpoint defense strategies. 

Uç Nokta Güvenliğinin Evrimi, Zorlukları ve Gelecek 
Yörüngeleri: Sıfır Güven ve Federe Öğrenme 
Perspektiflerini Bütünleştiren Sistematik Bir Derleme 
 
ÖZ  
 
Siber tehditlerin hem karmaşıklık hem de frekans bakımından sürekli evrim geçirmesi, uç nokta 
güvenliğini basit antivirüs çözümlerinin ötesine taşıyarak yapay zeka destekli, gerçek-zamanlı 
davranışsal analizi ve bulut tabanlı telemetri entegrasyonunu içeren bütüncül çerçevelere 
dönüştürmüştür. Bu çalışma, imza tabanlı antivirüs yazılımlarından Uç Nokta Tespiti ve Müdahalesi 
(EDR), Genişletilmiş Tespit ve Müdahale (XDR), Yönetilen Tespit ve Müdahale (MDR) ile Ağ Tespiti 
ve Müdahalesi (NDR) gibi çağdaş sistemlere geçişi ele alarak uç nokta güvenliğinin teknolojik 
evrimini ve güncel zorluklarını sistematik biçimde irdelemektedir. Kronolojik bir zaman çizelgesi 
ve tematik bir sentez aracılığıyla yürütülen analiz, uç nokta koruma teknolojilerinin sıfırıncı gün 
açıkları, Hizmet Olarak Fidye Yazılımı (Ransomware-as-a-Service) ve Nesnelerin İnterneti (IoT) 
zafiyetleri gibi büyüyen tehdit ortamına karşı nasıl uyum sağladığını ortaya koymaktadır. Bulgular, 
yeni nesil uç nokta güvenliği çözümlerinin kayda değer kabiliyetler sunmakla birlikte, uygulama 
karmaşıklığı, veri mahremiyeti mevzuatı ve çoklu cihaz ortamlarında birlikte çalışabilirlik 
eksiklikleri gibi kısıtlarla karşı karşıya olduğunu göstermektedir. Çalışma ayrıca, Sıfır Güven (Zero 
Trust) ve Federe Öğrenme (Federated Learning) ilkelerinin geleceğin uç nokta savunma 
stratejilerine entegrasyonuna yönelik kavramsal bir çerçeve önererek, literatürde yeterince 
derinlemesine ele alınmamış kritik araştırma boşluklarını tanımlamakta ve böylelikle özgün bir 
katkı sunmaktadır. Sonuç bölümünde, ölçeklenebilir, mahremiyeti koruyan ve küresel ölçekte 
eşgüdümlü uç nokta savunma yaklaşımlarının geliştirilmesinde söz konusu entegrasyonların 
taşıdığı stratejik önem kapsamlı biçimde tartışılmaktadır. 
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1. Introduction  
 

In the contemporary digital ecosystem, where hyper-connectivity is the norm, endpoint devices have 
emerged as the central battleground in the cybersecurity landscape [1, 2]. These devices, ranging from 
traditional desktops and laptops to the ubiquitous network of smartphones and Internet of Things 
(IoT) hardware, serve as the primary entry points for a diverse and sophisticated array of malicious 
actors, compelling a relentless and rapid evolution of endpoint protection strategies [3]. The 
technological trajectory of endpoint security has been characterized by a perpetual arms race, 
advancing from rudimentary signature-based antivirus tools of the past to the sophisticated, AI-
enhanced solutions that define the current era, such as Endpoint Detection and Response (EDR) and 
Extended Detection and Response (XDR) [4, 5]. This progression highlights the dynamic and escalating 
nature of digital threats, which now include advanced persistent threats (APTs), fileless malware, and 
ransomware-as-a-service (RaaS). 
Within this high-stakes environment, the establishment of robust endpoint security has become 
unequivocally critical for ensuring the operational continuity, data integrity, and overall resilience of 
modern organizations [6, 7]. The sheer volume and increasing sophistication of cyber-attacks 
consistently render traditional, perimeter-focused security measures insufficient, thereby 
underscoring an urgent need for more proactive, intelligent, and adaptive defense mechanisms capable 
of operating on scale [8, 9]. While modern solutions have significantly advanced threat detection and 
response capabilities, they are not a panacea. Persistent challenges related to implementation 
complexity, data privacy constraints, and cross-platform interoperability continue to limit their 
effectiveness. 
This systematic review addresses these issues by charting technological evolution, persistent 
challenges, and future trajectories of endpoint security. However, its principal contribution extends 
beyond a mere synthesis of the existing landscape. We propose a novel conceptual framework that 
advocates for the deep integration of Zero Trust architectures [94] and Federated Learning [103] 
principles as the cornerstone for the next generation of endpoint defense. This study distinctively 
contributes to the literature by not only presenting this unique integrated framework but also by 
identifying and articulating a set of critical, previously under-detailed research challenges that arise 
from this synthesis. We posit that such integration is pivotal for addressing the nuanced complexities 
of modern threats, enhancing proactive defense while fundamentally upholding data privacy and 
ensuring systemic scalability [10]. By systematically identifying existing gaps and proposing this 
forward-looking model, this review charts a clear and actionable course for future research and 
development in this vital domain. 
 

2. Historical Development of Endpoint Security  
 
The evolution of endpoint security is a product of the continuous interaction between cyber threats 
and the defense mechanisms developed against them. This section examines the main stages of this 
evolution 
 
2.1. Early Cybersecurity Challenges and Solutions  
 
The emergence of malware in the 1980s led to the development of the first generation of antivirus tools 
[11, 12]. These initial threats were generally simple viruses and worms, and their propagation speed 
was low by today’s standards [13]. The first antivirus programs were simple scanners focused on 
detecting known malware signatures (unique code sequences) [14]. During this period, with the 
proliferation of personal computers and increased network connectivity, new avenues for malware 
propagation emerged [15]. Early PC viruses like "Brain" and early network worms like the Morris 
Worm highlighted the vulnerability of digital assets and the need for specialized security software [16, 
17]. These initial solutions were reactive; that is, they were effective only after a threat was identified 
and a signature was created [18]. 
 
2.2. Development of Antivirus Technologies 

 
As cybercriminals adapted, antivirus systems evolved with heuristic and behavior-based detection 
methods [19, 20]. Signature-based detection was found to be ineffective against previously unseen 
(zero-day) malware [21]. Heuristic analysis attempted to detect unknown threats by looking for 
general characteristics or behavioral patterns of malware [22]. For example, a program attempting to 
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replicate itself or modify system files could be flagged as suspicious [23]. Behavior-based detection, on 
the other hand, works by monitoring a program’s actions on the system (e.g., accessing specific registry 
keys, establishing network connections) and correlating these actions with malicious behaviors [24, 
25]. During this period, additional security layers such as firewalls and intrusion detection systems 
(IDS) began to be integrated into antivirus software [26, 27]. The emergence of more complex malware, 
such as polymorphic and metamorphic viruses that constantly change their signatures, further 
increased the need for these more advanced detection techniques [28]. 
 
 
 
2.3. Transition to Advanced Endpoint Security 

 
With the rise of Bring Your Own Device (BYOD) policies and complex threats like Advanced Persistent 
Threats (APTs), Endpoint Detection and Response (EDR) solutions introduced real-time detection and 
analytics capabilities [29, 30]. Traditional antivirus software was inadequate in detecting and 
responding to complex and targeted attacks like APTs [31]. APTs are typically carried out by 
sophisticated attacker groups that operate stealthily for extended periods to compromise a specific 
target [32]. BYOD, by allowing employees to use their personal devices on corporate networks, 
increased the number of uncontrolled and potentially insecure endpoints [33, 34]. EDR solutions 
responded to these challenges by continuously monitoring all activities on endpoints, detecting 
suspicious behaviors, and providing security analysts with tools to investigate and respond to threats 
[35, 36]. EDR went beyond merely blocking malware, focusing on understanding and intervening in the 
entire lifecycle of an attack [37]. 
 

3. Methodology 
 
This study employs a systematic literature review (SLR) methodology, adhering to established 
guidelines [40, 41], to analyze the development, challenges, and future directions of endpoint security 
technologies. The SLR process involved several distinct phases: 
 
3.1. Literature Collection and Search Strategy 

 
Academic publications, white papers, cybersecurity vendor reports, and government frameworks (e.g., 
NIST [38], ENISA [39]) were systematically collected. The search was conducted across recognized 
digital libraries: IEEE Xplore, Scopus, ScienceDirect, and Google Scholar. The search strategy was 
designed to be comprehensive and reproducible. Search queries were constructed using Boolean 
operators (AND, OR) to combine core concepts and their synonyms. Core keywords included: 
"endpoint security", "antivirus", "Endpoint Detection and Response" (EDR), "Extended Detection and 
Response" (XDR), "Managed Detection and Response" (MDR), "Network Detection and Response" 
(NDR). These were combined with terms related to evolution ("evolution", "history", "development", 
"trends"), challenges ("challenges", "issues", "vulnerabilities", "limitations", "privacy"), and future 
technologies ("Zero Trust", "federated learning", "AI", "machine learning", "UBA", "IoT security"). For 
instance, a sample query for IEEE Xplore was: ‘(("endpoint security" OR "EDR" OR "XDR") AND 
("evolution" OR "history" OR "trends") AND ("Zero Trust" OR "federated learning" OR "AI"))‘. Similar 
logical structures, adapted to each database’s syntax, were used. The literature search focused 
particularly on studies published between January 2014 and December 2024 to capture the most 
recent advancements and the current state of the field [40, 42]. 
 
3.2. Literature Selection Flow 

 
The selection process for this systematic literature review was meticulously conducted following a 
multi-stage approach, adhering to the principles outlined in the PRISMA (Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses) statement [43]. A PRISMA flow diagram, illustrating the 
different phases of the information gathering and selection process, is presented in Figure 1. The key 
stages were as follows: 

1. Identification: An initial search across the designated databases (IEEE Xplore, Scopus, 
ScienceDirect, and Google Scholar) using the defined search strings yielded a total of 3450 records. 
After automated removal of 250 duplicates by reference management software, 3200 records 
remained. 
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2. Screening: The titles and abstracts of these 3200 records were screened for relevance against 
the predefined inclusion and exclusion criteria. During this phase, 2850 records were excluded as they 
were clearly not aligned with the scope of endpoint security evolution, challenges, or future directions 
concerning Zero Trust and Federated Learning, or did not meet other primary criteria (e.g., language, 
document type). This left (350) articles for full-text assessment. 

3. Eligibility: The full texts of the 350 potentially relevant articles were retrieved and thoroughly 
assessed for eligibility. At this stage, 179 articles were excluded for various reasons, including: 

• Lack of specific focus on endpoint security (n= 65). 
• Insufficient detail or methodological rigor (n=50). 
• Being outdated or superseded by more comprehensive works (n=31). 
• Inability to access the full text despite efforts (n=7). 
• Other reasons (e.g., focus solely on network security without endpoint implications) (n= 26). 

4. Inclusion: After the eligibility assessment, a final set of [e.g., 171] studies met all inclusion 
criteria and were included in the qualitative synthesis of this systematic literature review. 
The structured approach, as visualized in the PRISMA flow diagram (Figure 1), ensures transparency 
and replicability in the literature selection process for this review. 
 

 
Figure 1. PRISMA Flow Diagram illustrating the study selection process 

 
 
3.3. Data Extraction 
 
Data was categorized using a chronological and thematic coding strategy. Key themes included: 
Technological Milestones, Architecture and Functionality of Endpoint Tools, Real-world Attack Trends 
(e.g., ransomware, APTs), Limitations and Bottlenecks, Emerging Trends (Zero Trust, Federated 
Learning, AI advancements). Information relevant to these themes was systematically extracted from 
each selected source and recorded in a data extraction form [44]. This process was cross-checked by 
multiple researchers to ensure consistency and reliability [45]. The extracted data were then 
synthesized to identify the evolutionary trajectory of endpoint security and the key challenges it faces 
[46]. 
 
3.3. Limitations of this Study 
This review, while comprehensive, has certain limitations that should be acknowledged for a balanced 
interpretation of its findings: 
 

• Focus on Publicly Available Literature: The review primarily relies on publicly accessible 



24 

 

 

E-ISSN: 2651-5350 © 2025 Parantez T  

Houmed & Ceran 

academic papers, industry reports, and official documents. "Focusing on publicly available literature 
and not including private datasets or confidential security incident reports," [47] means that some 
cutting-edge, proprietary developments or highly sensitive incident details might not be captured. This 
could potentially limit the depth of analysis regarding the real-world efficacy of the very latest, non-
publicly documented technologies or the full extent of certain attack vectors. Future Mitigation 
Strategy: Future research could aim to bridge this gap by "collaborating with industry players to gain 
controlled access to private datasets" or by conducting case studies within organizations, subject to 
non-disclosure agreements [140]. 

• Exclusion of Comparative Performance Benchmarks: Direct "inter-tool performance 
benchmarks" (e.g., specific EDR vendor A vs. EDR vendor B) are out of scope. The review focuses on 
technological concepts, evolution, and challenges rather than product-specific evaluations. This means 
the review does not offer guidance on which specific commercial tools perform best. Future Mitigation 
Strategy: Dedicated future studies could focus on "developing standardized testing environments and 
metrics for inter-tool performance comparisons," which would provide valuable data for practitioners 
[141]. 

• Qualitative Synthesis Dominance: While structured, the synthesis is predominantly 
qualitative. A quantitative meta-analysis of, for example, detection rates or false positive rates across 
different approaches was not feasible due to the heterogeneity of reported data in the source literature. 
This limits the ability to make statistically generalizable claims about the performance of classes of 
technologies. Future Mitigation Strategy: As more standardized reporting emerges in cybersecurity 
research, future SLRs might incorporate meta-analytic techniques for specific comparable metrics. 

• Language Bias: The review was limited to English-language publications, potentially excluding 
relevant research published in other languages. Future Mitigation Strategy: Collaborative future 
reviews could involve multilingual teams to broaden the scope of included literature. 

Awareness of these limitations is important for interpreting and generalizing the findings [47]. 
Nevertheless, the breadth of sources consulted provides a robust overview of the field [48]. 
 

4. Modern Endpoint Security Technologies 
 
This section discusses modern endpoint security technologies such as EDR, XDR, MDR, and NDR, and 
how these technologies form a line of defense against cyber threats. 
 
4.1. Endpoint Detection and Response (EDR) 
 
EDR solutions are designed to provide comprehensive visibility, detect threats, and respond to them 
on endpoints (desktops, laptops, servers) [49]. The core capabilities of EDR are: 

 
• Data Collection: Continuously records events on endpoints such as processes, network 

connections, file accesses, and user activities [50]. 
• Detection: Analyzes this data to identify anomalies, suspicious behaviors, and known 

indicators of compromise (IoCs). It often uses machine learning and behavioral analysis techniques 
[51, 52]. 

• Investigation: Provides security analysts with tools and context to understand the root cause 
and scope of an alert or incident [53]. 

• Response: Performs automated or manual actions to neutralize threats, such as terminating a 
process, isolating a device from the network, or quarantining a file [54]. 
EDR plays a significant role in detecting stealthy and complex attacks where traditional antiviruses fall 
short. 
 
4.2. Extended Detection and Response (XDR) 
 
XDR extends the capabilities of EDR beyond endpoints by integrating telemetry data from multiple 
security layers, such as network, cloud workloads, email, and identity [55, 56]. The goal of XDR is to 
eliminate visibility gaps created by siloed security tools and provide more holistic threat detection and 
response [57]. The key advantages of XDR are: 

• Enhanced Visibility: Presents a more comprehensive picture by correlating different stages of 
the attack chain across multiple domains [58]. 

• Improved Detection: Enables more accurate and faster threat detection by combining weak 
signals from different sources [59]. 
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• Simplified Operations: Offers security operations centers (SOCs) more efficient investigation 
and response capabilities through a single platform [60]. 

XDR typically brings together different security tools within a vendor-specific ecosystem or 
through open integrations [61]. 
 
4.3. Managed Detection and Response (MDR) 
 
MDR offers outsourced expertise and services to help organizations effectively use technologies like 
EDR and XDR [62]. Many organizations lack the necessary skills and resources to manage advanced 
security tools and provide 24/7 threat monitoring and response [63]. MDR providers offer: 

• 24/7 Monitoring and Threat Hunting: Expert analysts continuously monitor customer 
environments and proactively hunt for threats [64]. 

• Alert Prioritization and Analysis: Reduces false positives and ensures focus on real threats 
[65]. 

• Guided Response and Remediation: Provides expert advice and support to contain and 
eliminate threats [66]. 
MDR is a valuable solution, especially for small and medium-sized enterprises (SMEs) lacking 
cybersecurity expertise [67]. 
 
4.4. Network Detection and Response (NDR) 
 
NDR solutions focus on detecting malicious activities and anomalies by analyzing network traffic [68]. 
It provides a complementary layer of visibility for situations where endpoint-based solutions (like 
EDR) may be blind or bypassed [69]. The core functions of NDR are: 

• Network Traffic Analysis (NTA): Deeply inspects network packets, extracts metadata, and 
identifies suspicious patterns using machine learning and behavioral analysis [70, 71]. 

• Encrypted Traffic Analysis (ETA): May use advanced techniques to detect threats in encrypted 
traffic without decrypting the data [72]. 

• Lateral Movement Detection: Effective in detecting instances where an attacker attempts to 
spread within the network [73]. 
NDR is particularly important in networks with unmanaged devices or devices where EDR agents 
cannot be installed, such as IoT and operational technology (OT) environments. Comparative 
Architecture of Modern Endpoint Security Technologies is shown in Figure 2. And the evolution of 
technologies is shown in Table 1.  
 

 
 

Figure 2. Comparative Architecture of Modern Endpoint Security Technologies (Conceptual Diagram) 
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Table 1. Evolutionary Timeline of Endpoint Security Technologies 

Period Key Threats Prominent Technologies Key Features    

1980s Simple viruses, worms First-generation antivirus (signature-
based) 

Scanning for known malware 
signatures 

   

1990s Polymorphic/metamorphic 
viruses, macro viruses 

Heuristic analysis, 
behavior-based detection (basic) 

Suspicious code characteristics, 
basic behavior patterns  

   

2000s Botnets, spyware, rootkits Antivirus suites (firewall, IDS integration) Comprehensive protection, basic 
network traffic monitoring  

   

2010s APTs, zero-day exploits, 
ransomware 

Endpoint Detection and Response (EDR) Continuous monitoring, real-time 
analytics, threat hunting, incident 
response 

   

2020s RaaS, IoT attacks, supply 
chain attacks 

Extended Detection and Response (XDR), 
Managed Detection and Response (MDR), 
Network Detection and Response (NDR), 
AI/Machine Learning integration, 
Emergence of Zero Trust concepts, Early 
exploration of Federated Learning for 
security 

Multi-layered visibility 
(endpoint, network, cloud), 
automated response, threat 
intelligence, principle of least 
privilege, privacy-preserving 
model training discussions 

   

 

5. Present Obstacles in Endpoint Security 
 
Despite advancements, challenges such as IoT security, regulatory compliance, and interoperability 
persist. These obstacles complicate the implementation and maintenance of effective endpoint security 
strategies.  
 
5.1. Internet of Things (IoT) Vulnerabilities 
 
The rapid proliferation of IoT devices (smart home appliances, industrial sensors, medical devices, etc.) 
creates new and significant security risks [74, 75]. These devices often: 

• Have Limited Resources: They are constrained in terms of processing power, memory, and 
energy, making it difficult to run complex security software [76]. 

• Are Designed Without Security in Mind: Many IoT devices are released to the market without 
basic security features (e.g., strong passwords, regular patch management) [77]. 

• Are Difficult to Manage: Monitoring, updating, and securing a large number of dispersed IoT 
devices is complex [78]. 
These vulnerabilities make IoT devices easy targets for botnets and allow them to be used as entry 
points to infiltrate broader networks [79, 80]. Attacks like the Mirai botnet have demonstrated the 
significant threat posed by vulnerable IoT devices [81]. 
 
5.2. Data Privacy and Regulatory Compliance 
 
Endpoint security solutions collect and process large amounts of data to detect and analyze threats 
[82]. This raises significant concerns related to the General Data Protection Regulation (GDPR) [83], 
the California Consumer Privacy Act (CCPA) [84], and other local data privacy regulations. 
Organizations must: 

• Be Transparent in Data Collection and Use: They must inform users about what data is 
collected and how it is used [85]. 

• Adhere to the Principle of Data Minimization: They should only collect data that is strictly 
necessary for security purposes [86]. 

• Store and Process Data Securely: They must take appropriate technical and organizational 
measures against unauthorized access and data breaches [87]. 
Complying with these regulations can be complex and costly, especially for globally operating 
organizations [88]. Non-compliance can lead to hefty fines and reputational damage. 
 
5.3. Implementation Complexity and Device Interoperability 
 
Implementing and managing modern endpoint security solutions (especially comprehensive platforms 
like XDR) can be complex. Organizations may face challenges with integration into existing 
infrastructures, interoperability of tools from different vendors, and training of security personnel 
[89].  

• Integration Challenges: Achieving seamless data flow and coordination between different 
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security tools and systems can be technically challenging [90]. 
• Vendor Lock-in: Some XDR solutions may perform best when working with products from a 

single vendor, potentially locking organizations into a specific ecosystem [91]. 
• Skills Gap: Effectively using advanced security tools and analyzing threat data requires 

personnel with specialized cybersecurity skills, but the number of professionals with these skills is 
limited [92, 93]. 
Compatibility with different operating systems, device types, and legacy systems also remains a 
significant interoperability issue. 

 

6. Emerging Trends and Future Directions 
 

Technological trends such as Zero Trust, federated learning, deeper AI integration, and user-centric 
security are redefining endpoint protection. These approaches promise more proactive, adaptive, and 
resilient security strategies. 
 
 
6.1. Zero Trust Architectures 
 
Zero Trust is a security model based on the principle of "never trust, always verify" [94, 95]. Unlike 
traditional perimeter-based security (where everything inside is trusted), Zero Trust does not 
inherently trust any user or device, regardless of whether they are inside or outside the network [96]. 
Every access request is strictly verified and authorized based on identity, device security posture, 
location, and other contextual factors [97]. In the context of endpoint security, Zero Trust includes: 

• Micro-segmentation: Dividing the network into smaller, isolated segments to limit lateral 
movement [98]. 

• Strong Identity and Access Management (IAM): Robustly authenticating user and device 
identities using multi-factor authentication (MFA) and continuous authorization [99]. 

• Continuous Endpoint Compliance and Health Checking: Dynamically assessing if devices 
comply with security policies (e.g., up-to-date antivirus, OS patches, no known vulnerabilities) before 
and during access [100]. 

• Least Privilege Access: Granting users and applications only the minimum necessary 
permissions to perform their tasks. 
Zero Trust provides a stronger defense against insider threats, compromised credentials, and 
sophisticated attacks that bypass traditional perimeters [101, 102]. Open Research Questions for Zero 
Trust in Endpoint Security: 
 
RQZ1: How can dynamic and context-aware Zero Trust policies be efficiently enforced across 
heterogeneous and resource-constrained endpoint devices (especially IoT) without significantly 
impacting performance or user experience? [142] 
RQZ2: What are effective and scalable mechanisms for continuous authentication and trust assessment 
of autonomous endpoint agents and services within a Zero Trust framework? [143] 
 
6.2. Federated Learning for Enhanced Privacy and Collaboration 
 
Federated learning (FL) is a machine learning technique that allows models to be trained 
collaboratively on decentralized data sources (e.g., directly on endpoints or local enterprise servers) 
without exchanging raw data [103, 104]. Only model updates (e.g., gradients or parameters) are 
typically shared with a central aggregator, thus enhancing data privacy [105]. Potential benefits of FL 
in endpoint security include: 

• Privacy Preservation: Sensitive endpoint data (e.g., user behavior, application telemetry) 
remains on the device or within the organization’s perimeter, reducing privacy risks and facilitating 
compliance with regulations like GDPR [106]. 

• Improved Model Robustness and Personalization: Models can be trained on diverse, real-
world data from multiple organizations or user groups, potentially leading to more robust and 
generalizable threat detection. Local models can also be personalized to specific user or device contexts 
[107]. 

• Reduced Communication Overhead: Transmitting model updates instead of large raw datasets 
can be more efficient, especially for bandwidth-constrained endpoints [108]. 

• Collaborative Threat Intelligence: Enables organizations to collaboratively build better threat 
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detection models without directly sharing potentially sensitive threat intelligence data [109, 110]. 
FL is promising for building more effective global defense strategies against rapidly evolving threats 
while respecting data sovereignty and privacy. Open Research Questions for Federated Learning in 
Endpoint Security: 
 
RQF1: How can FL systems in endpoint security be made robust against various adversarial attacks, 
such as data poisoning, model poisoning, and inference attacks, especially when dealing with non-IID 
(Independent and Identically Distributed) data from heterogeneous endpoints? [144] 
RQF2: What are effective incentive mechanisms and contribution evaluation frameworks to encourage 
participation and ensure fairness among different entities contributing to a federated endpoint security 
model, while also addressing potential free-riding or malicious contributions? [145] 
 
 
6.3. Deepening Role of Artificial Intelligence (AI) and Machine Learning (ML) 
 
Artificial intelligence and machine learning have become cornerstones of modern endpoint security, 
and their role will continue to deepen and become more sophisticated [111, 112]. These technologies 
provide: 

• Advanced Threat Detection: Enhanced ability to detect unknown (zero-day) and complex 
malware, polymorphic attacks, fileless malware, behavioral anomalies, and APT tactics [113, 114]. 

• Automated and Orchestrated Response: Enabling faster, more consistent, and potentially 
autonomous responses to threats across multiple security layers (endpoints, network, cloud) [115]. 

• Proactive Threat Hunting Automation: AI can assist human analysts or autonomously identify 
suspicious patterns, weak signals, and potential emerging threats in vast datasets [116]. 

• Predictive Security Analytics: Moving beyond detection to predict future attack vectors, 
potential targets, and the likelihood of compromise based on historical data and current threat 
intelligence [117]. 

• Explainable AI (XAI): As AI models become more complex, XAI techniques are crucial for 
providing transparency and interpretability into why a detection or decision was made. This builds 
trust and allows analysts to validate and fine-tune AI-driven security systems [118, 119]. 
Future AI/ML applications may include AI-driven decoy generation, automated vulnerability 
assessment, and AI-assisted reverse engineering of malware. Open Research Questions for AI/ML in 
Endpoint Security: 
RQA1: How can adversarial AI techniques (e.g., evasion attacks, model extraction) targeting endpoint 
security ML models be effectively and adaptively defended against in real-world deployments? [146] 
RQA2: What XAI methods are most effective in providing actionable and comprehensible explanations 
for complex AI-driven endpoint threat detections to security analysts with varying levels of expertise, 
and how can these explanations be integrated into SOC workflows? [147] 
 
6.4. User and Entity Behavior Analytics (UEBA) 
 
UEBA focuses on monitoring and analyzing user and entity (e.g., hosts, applications, services) activities 
to detect insider threats, compromised accounts, and anomalous behaviors indicative of an attack 
[120]. UEBA systems establish a normal behavior baseline for each user and entity and flag statistically 
significant deviations as potential threats [121]. When integrated with endpoint security telemetry, 
UEBA can detect: 

• Anomalous Access Patterns: Unauthorized access attempts, logins at unusual times or from 
atypical geolocations, or access to unusual resources [122]. 

• Data Exfiltration Indicators: Anomalous access to sensitive data, unusual data movement, or 
attempts to transfer large volumes of data outside the organization [123]. 

• Account Compromise or Insider Misuse: Actions significantly different from a user’s or entity’s 
established normal behavior patterns, potentially indicating credential theft or malicious insider 
activity [124]. 

• Lateral Movement Indicators: A user account performing actions usually associated with 
system administrators or accessing an unusual number of endpoints. 
UEBA adds a critical defense layer by focusing on behavioral indicators, which can detect threats that 
evade signature-based or rule-based defenses [125]. Open Research Questions for UEBA in Endpoint 
Security: 
RQU1: How can UEBA systems effectively differentiate between genuinely malicious anomalous 
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behavior and benign behavioral drift or legitimate but unusual activities, thereby minimizing false 
positives and analyst fatigue in dynamic endpoint environments? [148] 
RQU2: What are privacy-preserving techniques for collecting and analyzing granular user and entity 
behavior data for UEBA purposes, especially in the context of remote work and BYOD scenarios, while 
still maintaining detection efficacy? [149] 
 
7. Discussion 
 
The evolution of endpoint security, as traced in this review, unequivocally demonstrates a reactive-to-
proactive paradigm shift, moving from signature-matching to intelligent, context-aware defense 
mechanisms [126, 127]. The progression from AV to EDR, XDR, and NDR, augmented by AI/ML, 
addresses the escalating sophistication of cyber threats [128]. However, this technological arms race 
introduces its own complex challenges, demanding more than just incremental improvements. 
 
7.1. Inter-Technology Dynamics: Synergies and Conflicts 
 
The modern endpoint security landscape is increasingly characterized by the interplay of multiple 
advanced technologies, such as EDR, XDR, and NDR, alongside emerging paradigms like Zero Trust (ZT) 
and Federated Learning (FL). 

• Synergies: XDR, by its nature, aims to create synergy by correlating data from EDR (endpoint), 
NDR (network), cloud security, and identity systems [57]. Integrating ZT principles can further 
enhance XDR by providing dynamic access controls based on continuously verified trust levels from 
these correlated signals [150]. FL can then be used to train the AI/ML models that power XDR and ZT 
decision engines using diverse, privacy-preserved datasets from multiple deployments, leading to 
more robust and adaptive threat detection [151]. 

• Integration Challenges and Performance Conflicts: While synergistic in theory, integrating 
these diverse systems presents significant practical hurdles. For example, ensuring seamless telemetry 
data exchange between an EDR from vendor A, an NDR from vendor B, and a ZT framework from 
vendor C can be hampered by proprietary data formats and APIs [89]. Performance conflicts may arise; 
for instance, intensive AI processing for NDR coupled with continuous endpoint monitoring for EDR 
and ZT policy enforcement might strain network and endpoint resources, especially in large-scale or 
resource-constrained IoT environments [152]. 

• Managerial Complexity: Managing this complex ecosystem of interconnected tools requires 
highly skilled personnel and mature security operations processes. The "single pane of glass" promised 
by XDR can become a "single point of confusion" if not implemented and managed correctly [132]. 
Defining and maintaining granular ZT policies across a dynamic environment also adds significant 
administrative overhead. 

 
7.2. Addressing Key Challenges: IoT, Data Privacy, and Proposed Solutions 
 
IoT Vulnerabilities: The explosion of insecure IoT devices remains a critical weak link [129]. Traditional 
EDR agents are often too resource-intensive for these devices. Original Solution Proposal/Conceptual 
Model: We propose a lightweight, FL-based anomaly detection framework for IoT endpoint clusters. 
Local models on gateway devices or edge servers could be trained using FL with minimal data from IoT 
endpoints, focusing on deviations in network traffic patterns or essential process behaviors. A ZT 
approach would then enforce strict micro-segmentation and least privilege access for these devices 
based on anomaly scores from the FL model [153] . Research Questions Stemming from Proposal: 
 
RQI1: How can FL model aggregation be optimized for highly heterogeneous IoT environments with 
varying data quality and availability? 
RQI2: What are the minimal yet effective sets of features that can be extracted from resource-
constrained IoT devices for FL-based anomaly detection without compromising device performance? 
 
Data Privacy in an Era of Pervasive Monitoring: The intensive data collection by EDR/XDR systems 
clashes with increasingly stringent data privacy regulations like GDPR [131]. Original Solution 
Proposal/Conceptual Model: Beyond FL, integrating advanced privacy-enhancing technologies (PETs) 
such as homomorphic encryption or secure multi-party computation for specific analytics tasks within 
an XDR framework could allow for threat correlation without exposing raw sensitive data [153]. For 
instance, correlating login anomalies (from IAM) with endpoint process behavior (from EDR) could 
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occur in an encrypted domain. Research Questions Stemming from Proposal: 
 
RQP1: What is the computational overhead and practical feasibility of applying PETs like homomorphic 
encryption for real-time threat analytics in XDR systems? 
RQP2: How can organizations effectively demonstrate GDPR compliance (e.g., data minimization, 
purpose limitation) when using complex AI/ML models that are often "black boxes" for endpoint threat 
detection? 
 
7.3. Ethical Considerations in AI-Driven Endpoint Security 
 
The increasing reliance on AI and FL in endpoint security introduces significant ethical considerations: 

• Bias and Fairness: AI models trained on historical data may inherit biases present in that data, 
leading to discriminatory outcomes or disproportionate false positives for certain user groups or 
device types [154]. In FL, if certain participants contribute biased data, it could skew the global model. 
Potential Solution Strategy: Implementing fairness-aware machine learning algorithms, regular bias 
audits of models, and ensuring diverse and representative training datasets (even in FL contexts) are 
crucial [155]. 

• Transparency and Explainability (XAI): The "black box" nature of many advanced AI models 
makes it difficult to understand why a particular decision (e.g., blocking a process, isolating a device) 
was made [119]. This lack of transparency can erode trust and hinder effective incident response. 
Potential Solution Strategy: Investing in and integrating XAI techniques that can provide human-
understandable explanations for AI decisions is vital. This includes local and global explanations of 
model behavior [118]. 

• Model Manipulation and Security of AI: AI models themselves can be targets. Adversarial 
attacks can cause misclassification (evasion), and model poisoning in FL can corrupt the global model 
[156]. Potential Solution Strategy: Developing robust defenses against adversarial attacks, secure 
aggregation protocols in FL, and continuous monitoring of model integrity are necessary research 
areas. 

• Accountability and Responsibility: When an AI-driven system makes an error (e.g., a false 
positive leading to system outage, or a false negative leading to a breach), determining accountability 
can be complex. Potential Solution Strategy: Clear governance frameworks for the development, 
deployment, and oversight of AI in security are needed, defining roles and responsibilities. 
Addressing these ethical challenges is paramount for the responsible and sustainable adoption of AI in 
endpoint security. 
 
Looking ahead, trends such as Zero Trust architectures, federated learning, and deeper integration of 
AI are promising [135]. However, their successful realization also entails its own challenges. Full 
implementation of Zero Trust requires a cultural shift, significant architectural redesign, and 
meticulous planning [136]. Federated learning, while privacy-enhancing, may be vulnerable to new 
attack vectors like sophisticated model poisoning or inference attacks if not carefully designed, and 
could face scalability and incentive issues in large, heterogeneous networks [137]. The quest for true 
XAI that balances explainability with model performance remains an active research area [119]. 
The overarching theme is that endpoint security will remain a continuous cat-and-mouse game. As 
threat actors innovate, so too must defense mechanisms. Future success will depend not only on 
technological innovations but also on strategic planning, development of skilled personnel, 
establishment of robust processes, and achieving an optimal balance between security, usability, and 
privacy [138]. Global collaboration, standardized threat intelligence sharing, and public-private 
partnerships are also vital for an effective collective defense in an increasingly interconnected and 
complex digital world [139]. 
 

8. Conclusion 
 
This systematic review has provided a comprehensive and longitudinal analysis of the evolution of 
endpoint security, meticulously tracing its transformative journey from the foundational principles of 
signature-based antivirus to the sophisticated, AI-driven architectures of modern Endpoint Detection 
and Response (EDR), Extended Detection and Response (XDR), Managed Detection and Response 
(MDR), and Network Detection and Response (NDR) solutions. Our analysis has illuminated the 
historical progression of defense mechanisms in response to an ever-advancing threat landscape, 
critically evaluated the capabilities and inherent limitations of contemporary technologies and 
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underscored the persistent challenges that continue to confront the field, namely the vulnerabilities of 
IoT ecosystems, the complexities of data privacy compliance, and the significant hurdles of 
implementation and interoperability. A key finding of this work is that while endpoint security has 
successfully adapted to the dynamic nature of cyber threats, each successive generation of solutions 
paradoxically introduces its own set of operational burdens and strategic limitations. 
The primary and most significant contribution of this study is the formulation and proposal of an 
integrated conceptual framework designed to guide the next paradigm of endpoint defense. This 
framework is architected upon the synergistic integration of Zero Trust principles and Federated 
Learning methodologies. By systematically identifying and articulating a detailed set of open research 
questions pertinent to the successful implementation of Zero Trust, Federated Learning, advanced 
AI/ML, and UEBA, this paper moves beyond description to establish a concrete agenda for future 
scientific inquiry. Our analysis underscores a powerful synergy: Zero Trust provides the stringent, 
"never trust, always verify" policy framework for access control, while Federated Learning offers the 
privacy-preserving, collaborative machine learning mechanism needed to train the intelligent models 
that can enforce these policies dynamically and effectively. This combination is poised to foster more 
scalable, adaptive, and resilient defense postures that are designed with privacy at their core. 
Furthermore, this review provides a forward-looking perspective by discussing the intricate 
interactions, potential benefits, and inherent risks associated with these future trends. We have 
highlighted how Zero Trust policies can be dynamically informed by AI models trained via Federated 
Learning, creating a proactive security posture that would otherwise be unattainable. Simultaneously, 
we have acknowledged the significant integration complexities, the emergence of new adversarial 
attack vectors against the learning models themselves, and the profound ethical dilemmas surrounding 
bias, fairness, and transparency in AI-driven security. 
Ultimately, navigating the future of endpoint security demands more than just technological 
innovation; it requires a holistic strategy that addresses these technical hurdles, confronts the ethical 
and privacy considerations head-on, and fosters a culture of continuous adaptation within the 
cybersecurity community. Endpoint security will undoubtedly remain the critical frontline in the 
defense of our digital assets. Therefore, sustained, focused, and collaborative research and 
development efforts, particularly within the open research areas identified herein, are not merely 
recommended; they are imperative for realizing a more secure, resilient, and trustworthy digital future. 
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